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As the rate of infectious disease emergence continues to 
rise, it is becoming increasingly important to identify and 
understand the drivers of zoonotic risk in wild animals1–3. 

Humans are rapidly altering patterns of wildlife disease through a 
combination of climate change and land conversion, both of which 
are expected to drive increased spillover (that is, interspecific trans-
mission of parasites from animals into humans2–8). Urban envi-
ronments in particular are expected to facilitate the emergence of 
zoonotic pathogens in wildlife3,7,9–11 because of a combination of 
impaired immune systems fed by anthropogenic resources10,12 and 
greater pollution13 as well as increased proximity of wild animals 
to humans7,14. This combination of factors is likely to become even 
more problematic in the future as the world’s population continues 
to rapidly grow and urbanize15–17.

Previous meta-analyses have uncovered elevated stressors and 
greater parasite burdens or parasite diversity in urban animals, with 
the general expectation that the urban environment weakens host 
immune responses5,9,11. However, these studies usually comprise rela-
tively few examples spread across a small selection of animal species, 
reducing their ability to generally address the question of how urban-
ization affects zoonotic disease risk. Moreover, the results of such 
analyses have been equivocal, with both positive, negative and neutral 
effects of urban living on dimensions of wildlife disease5,9,11. Testing 
whether urban-adapted mammal species exhibit greater zoonotic risk 
in a broad-scale, pan-mammalian analysis could provide more general 
answers to this question, informing the design of parasite-sampling 
regimes and efforts to mitigate zoonotic disease risk in humans.

A recent pan-mammalian study used a literature review to build 
a database of mammal species’ urban adaptation status (that is, 
their ability to live off urban resources18), which they then linked 
with species-level phenotypic traits. Although different traits were 
important for different mammalian orders, species with larger litters  
were generally more likely to be urban adapted. This relationship 
could explain the common observation that fast-lived host species 
(that is, those that favour reproduction over survival) tend to dis-
proportionately source zoonotic parasites3,14,19. Complicating mat-
ters, a given species’ observed parasite diversity depends inherently 
on the effort that has been directed towards examining it20–23. Such 
research effort is heterogeneously distributed in space20,24,25 and 
across mammal species, particularly with regards to life history14 
and taxonomy20,21. As such, sampling bias could be important in 
mediating observed trends among urbanization, life history and 
zoonotic parasite diversity. In particular, urban mammal species 
may have more zoonoses (as a proportion of their known parasite 
richness) because historic contact with humans has allowed more 
parasites to spill over into humans and be observed. Although it has 
been shown that human-adjacent animals have both more parasite 
species and more zoonoses5, it is unclear yet whether human con-
tact has filtered them to produce disproportionately more observed 
zoonoses in urban species.

In this Article, we take a macroecological approach to investi-
gate: (1) whether urban-affiliated mammal species have more zoo-
notic parasites and (2) whether urban-affiliated mammal species 
harbour more zoonotic parasites than expected given their overall 
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parasite diversity. We anticipated that species capable of adapting 
to urban settings would host a higher diversity of known parasites, 
owing to greater susceptibility and more intense sampling effort, 
and that a disproportionately high number of these parasites would 
be known to be zoonotic as a result of their greater historical con-
tact with humans. We further expected that urban adaptation status 
would account for some variation in the effects of life history traits 
on parasite richness, implying that fast-lived species more often 
transmit zoonotic parasites because they are more likely to inhabit 
urban environments in close proximity to humans14.

Results
We ran a series of generalized linear mixed models (GLMMs) that 
broadly supported our prediction that urban-adapted mammals 
would have greater parasite richness. Our first model set exam-
ined parasite richness as a response variable, revealing that urban 
mammals have more known parasites (Fig. 1a and Supplementary  
Fig. 1), and more zoonoses specifically (Fig. 1b and Supplementary 
Fig. 2). This urban bias diminished substantially in magnitude 
when we added citation counts as an explanatory variable repre-
senting research effort (Fig. 1c); in the case of overall parasite rich-
ness, adding citation counts rendered the effect of urban adaptation 
non-significant (P = 0.07). Citation number was strongly positively 
associated with urban status, overall parasite richness and overall 
zoonotic richness (Figs. 1c and 2), as well as being significant for all 

parasite subgroups (Supplementary Figs. 4 and 5). We elaborated 
on these models by accounting for spatial patterns in parasite rich-
ness and sampling effort using a centroid-based stochastic partial 
differential equation (SPDE) effect. These effects improved model 
fit substantially (deviance information criterion threshold change 
(ΔDIC) >150) and increased the magnitude and significance of 
the urban adaptation effects (Fig. 1c; P = 0.018 and P = 0.006). As 
such, we conclude that urban species have slightly higher parasite 
diversities when accounting for sampling effort and geographic 
heterogeneity.

To provide further insight into how histories of sampling may 
have shaped current patterns of observed pathogen richness across 
urban-adapted and non-urban species, we used our dataset to 
descriptively visualize historical pathogen discovery rates and pub-
lication effort trends between 1930 and 2015, following a recent 
study of mammalian viral discovery26. We find that fewer annual 
discoveries generally occur in urban species; however, because 
there are so few urban-adapted species (157 out of 2,792), these 
species have been, on average, much more intensely studied and 
with a higher parasite richness since the mid-1960s (Supplementary 
Fig. 7). Notably, differences in mean parasite richness between 
urban-adapted and non-urban species have continued to widen 
in the intervening years as the discrepancy in sampling effort has 
continued to grow (Supplementary Fig. 7). This finding suggests 
that higher observed parasite richness in urban-adapted species  
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Fig. 1 | Urban-adapted mammals have more known parasites and zoonoses specifically. a,b, Parasite richness (a) and zoonoses richness (b) stratified 
by species that can capitalize on urban environments (Urban) and those that cannot (Non-urban). Each point represents a mammal species (n = 2,792 
species). The y axis represents the species’ known parasite diversity, on a log10 scale. Black dots and error bars are raw group means ± s.e.m. c,d, The urban 
adaptation effect for overall richness (c) and zoonotic richness (d) across multiple model formulations (n = 2,792 species). Base, model including all fixed 
effects except citation number; Citation, model including citation number; Spatial, model including both citation number and a spatially distributed SPDE 
random effect. Points are the mean of the posterior effect estimate distribution from the GLMMs and error bars are 95% CIs. Numbers above the error 
bars display P values, with asterisks denoting levels of significance (*P < 0.05; **P < 0.01; ***P < 0.001).
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is largely driven by long-term, accumulated differences in  
sampling effort.

We constructed a path analysis, which showed that urban adap-
tation was not associated with greater zoonotic richness when 
accounting for a direct effect of parasite richness; in fact, the esti-
mated effect was slightly negative (Fig. 3; P = 0.024). In contrast, 
the indirect effect of urban adaptation on zoonotic diversity acting 
through parasite diversity was positive, substantial and significant 
(effect + 0.401; 95% credibility interval (CI) 0.116–0.749; P = 0.004) 
(Fig. 3). Taken together, these results imply that positive effects of 
urban adaptation on zoonotic diversity act largely through greater 
overall known parasite diversity, rather than by disproportionately 
elevating zoonotic parasite richness specifically. We performed mul-
tiple additional analyses to examine several dimensions of urban 
adaptation and sampling bias that could affect our results. There 
was no improvement in model fit when urban status interacted 
with host order, suggesting that the effect of urban adaptation on 
parasite diversity and zoonotic risk did not vary between mammal 
orders (ΔDIC < 5 relative to the base model). We built a generalized 
additive mixed model (GAMM) to next examine whether citation 
numbers had different effects for urban and non-urban species, but 
found no support for the interaction (ΔDIC < 5). Similarly, mul-
tivariate models revealed concordance between estimates for the 
effect of urban adaptation across parasite subtypes and implied that 
the urban effects were not being driven by specific groups of para-
sites. Finally, we used zero-inflated GLMMs to account for mam-
mal species with no recorded parasites, demonstrating strong urban 
biases for the count component (that is, the number of parasites a 
mammal species hosted) as well as the inflation component (that 
is, whether the mammal species had greater than zero known para-
sites) (Supplementary Fig. 6). This finding implies that our results 
are not disproportionately driven by excess zeros produced by the 
inclusion of pseudoabsences (that is, species without any evidence 
of parasites).

A GLMM with different spatial fields for urban and non-urban 
species was not an improvement over the overall SPDE model 
(ΔDIC = 14.35 relative to the SPDE model). This implies that the 
bias towards greater parasite richness in urban species is relatively 
evenly distributed across the globe, rather than being focused in 
certain areas. These findings imply that our results were robust to 
geographic variation in parasite richness and revealed strong spatial 
patterns (Fig. 4c). We found no effect of absolute latitude (Fig. 4b), 
but we observed substantial between-continent variation in parasite 
diversity (Fig. 4b): North America was associated with the greatest 

parasite diversity, followed by Africa, then Eurasia, South America 
and Oceania.

Lastly, we also uncovered support for a range of other impor-
tant species traits driving parasite richness (Fig. 4a). Most notably, 
faster life history was associated with greater (zoonotic) parasite 
diversity, according to the first principal component (PC1) (Fig. 4a).  
However, in the path analysis model, the effect of life history on 
zoonotic richness was supplanted by the inclusion of overall parasite 
richness (Supplementary Fig. 3). This finding reveals that, as with 
urban adaptation status, life history is associated with greater over-
all parasite richness rather than zoonotic richness specifically. There 
was substantial between-order variation in zoonotic and overall 
diversity (Supplementary Figs. 4 and 5), but adding a continuous 
phylogenetic similarity effect did not improve on the order-level 
effects (ΔDIC < 5). Diet diversity was positively associated with 
zoonotic richness but not with overall parasite richness (Fig. 4a). 
Phylogenetic distance from humans was negatively associated with 
zoonotic richness overall (Fig. 4a), with zoonotic richness of viruses 
and helminths and with overall richness of viruses and helminths; 
however, phylogenetic distance from humans was positively asso-
ciated with overall richness of arthropods (Supplementary Figs. 4 
and 5). Greater range area was associated with increased (zoonotic) 
parasite richness overall (Fig. 4a) and for many parasite subsets 
(Supplementary Figs. 4 and 5). Finally, domesticated species had 
more zoonotic helminths and protozoa (Supplementary Fig. 5) but 
did not differ in overall parasite richness from non-domesticated 
mammal species (Fig. 4a and Supplementary Fig. 4).
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Fig. 3 | Path analysis revealed that urban-adapted mammals do not 
have more zoonoses than expected on the basis of their overall parasite 
diversity. Arrows denote hypothesized causal relationships. Red lines 
represent positive effects and blue lines represent negative effects. Other 
variables were included in the component linear models but are not 
displayed in this figure for clarity. Labels display the model effect estimates 
on the log-link scale, with 95% CIs in brackets and P values based on 
proportional overlap with zero.
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Fig. 2 | Citation numbers are higher in urban species and drive observed parasite and zoonotic parasite richness. a, Citation numbers in urban and 
non-urban species. Each coloured dot represents a species. R and P values are derived according to Spearman’s rank correlations. Black dots and error bars 
are raw means ± s.e.m. (n = 4,968 species). b,c, Correlation between citation number and parasite richness (b) and zoonotic richness (c). See Fig. 1 for the 
slope estimates from the GLMMs for b and c.
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Discussion
Using a global pan-mammalian dataset of host species’ traits and 
parasite associations, we found that urban-adapted mammal species 
have more known parasites, and in turn more zoonotic parasites, 
arising largely from research effort. This finding builds on recent 
work showing that wild animals with at least one known zoonotic 
parasite tend to inhabit human-managed landscapes5, but we used 
a much broader dataset of urban-adapted mammals and applied a 
strict definition of urban adaptation based on long-term resource 
use and fitness in urban landscapes18, while accounting for a cor-
related suite of phenotypic traits, research effort and geographic 
biases, including range size and phylogenetic relatedness to humans. 
Additionally, we were surprised to find that urban mammals’  
zoonotic richness was in fact lower than expected on the basis of 
their observed parasite richness. Our findings therefore do not 
support our main prediction that urban-adapted species host 
more known zoonotic parasites because they have had more his-
torical contact with humans, creating more opportunities for the 

spillover of potentially zoonotic parasites14. Rather, urban species 
appear to have been preferentially sampled for non-zoonotic par-
asites, probably as a result of their proximity to humans and ease 
of sampling—that is, mammals in urban contexts might be more 
often spontaneously examined for parasites, while mammals in 
non-urban contexts are more likely to be examined specifically 
when they are suspected sources of zoonotic parasites. The rea-
son for urban mammals’ greater overall parasite richness remains 
uncertain, and many questions linger about the drivers of zoonotic 
diversity in urban wildlife. Most pressingly, why has human–wild-
life contact not driven greater zoonotic diversity in urban species?

Sampling bias is one of few universal phenomena in ecological 
research27,28, and understanding these biases is integral to design-
ing interventions and predicting the consequences of global  
change. Our models revealed that urban-adapted species have  
been more thoroughly sampled for parasites than non-urban spe-
cies, but in roughly similar patterns. Known urban status is highly 
geographically heterogeneous18 and in a similar pattern to disease 
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surveillance20,24,25, which we expected to be driving our perceived 
urban adaptation effect. The spatial patterns of parasite richness that 
we discovered mirror previously reported biases towards temper-
ate, high-income countries27,29 and were particularly high in North 
America, while being particularly low in South America, confirm-
ing that parasite biodiversity is substantially undersampled in the 
tropics24. This reflects the pattern of urban mammal diversity, which 
peaks at high latitudes and is low in South America, Southeast Asia 
and sub-Saharan Africa18. However, accounting for this heterogene-
ity in fact increased the urban bias estimate rather than decreasing 
it. Further, there was no significant interaction of urban adapta-
tion with either the spatial effect or host order, implying minimal 
geographic and taxonomic bias in these urban-directed sampling 
processes. Finally, our temporal analysis revealed that urban and 
non-urban mammals have been subjected to similar trends in 
parasite discovery rate over the past century, with citation counts 
and parasite diversity following similar shapes throughout. The 
only analysis that implied a qualitatively different sampling trend 
in urban-adapted mammal species was our path analysis, which 
revealed that urban-adapted species have fewer known zoonotic 
parasites than expected from their observed parasite richness. Taken 
together, the evidence suggests that urban species are much better 
sampled for parasites than non-urban species, but with a stronger 
focus on non-zoonotic parasites, and this urban bias should be  
considered in future species-level analyses of zoonotic risk.

Even accounting for these layers of bias, our data retained a posi-
tive effect of urban status, suggesting that either: (1) urban mammals 
are subject to a specific sampling bias that could not be detected 
through our analyses, or (2) urban environments increase overall 
parasite diversity through effects on host immunity, behaviour and 
demography. Although these effects did not disproportionately 
increase zoonotic parasite diversity, urban mammals nevertheless 
host many zoonotic parasites as a result of their greater overall para-
site richness, and therefore understanding this trend may be impor-
tant for public health. Anthropogenic pollutants, altered nutrition 
and greater host densities in urban environments have been shown 
to weaken host immune systems and promote greater burdens and 
diversities of parasites when comparing hosts along urban–rural 
gradients9,10. Such intraspecific effects should accordingly scale 
up such that urban-adapted species have greater parasite richness 
than species that do not experience such immune impairments. 
Similarly, greater host densities and resource concentrations could 
facilitate elevated rates of density-dependent parasite transmis-
sion within and between species, rendering urban-affiliated species 
more likely to maintain parasites and resulting in greater observed 
parasite diversity30. However, there is some evidence that urban 
wildlife might exhibit stronger immunological resistance31–33, which 
would be expected to have the opposite effect on parasite diversity, 
and a previous study found that some parasite groups are decreased 
in urban environments rather than increased11. Unfortunately, the 
field is generally lacking in large-scale cross-species analyses of 
immune function that would be required to differentiate these pos-
sibilities14 (but see also refs. 34–36). Ideally, future analyses incorporat-
ing life history, habitat preference, immunity and parasite diversity 
may be better able to differentiate the mechanisms underlying these 
species’ zoonotic risk14.

Achieving broad insights into the urban drivers of zoonotic risk 
may require finer-scale data than we had access to here. This study 
was conducted with a minimum compatibility filter: we considered 
a species as a host of a given parasite if it was observed with said par-
asite at any point in the literature, and richness was calculated as the 
sum of these associations across parasite subgroups. While studies 
of parasite diversity are common in macroecology, this deliberately 
narrow scope limits inference about a range of relevant processes 
including host competence (that is, species’ ability to transmit 
parasites)36, prevalence of the parasite in the host populations, host 

density and, therefore, the rate of spillover (that is, the number of 
animal-to-human transmission events per unit of time). These are 
all important components of a species’ zoonotic risk, and some 
hosts undoubtedly present substantial zoonotic risk despite having 
relatively low known parasite diversity. For example, prairie dogs 
(Cynomys ludovicianus) only have five known parasites in our data-
set, yet they are a widespread and abundant species and may play 
an important role in epizootic outbreaks of plague (Yersinia pestis) 
in North America37. Given this disparity, it remains unclear how 
closely a species’ zoonotic diversity should correlate with the rate 
of spillover from these species; as such, we caution that our analysis 
does not necessarily offer insights into the relative frequency or rate 
of spillover events, or the potential severity of zoonotic outbreaks, 
in urban environments.

Providing a general answer to the question ‘does urbaniza-
tion increase the risk of zoonotic disease’ may require datasets of 
individual-level or population-level infection status, using multiple 
hosts and parasites, distributed across a wide range of urbanization 
gradients. Higher-resolution datasets such as these would facilitate 
untangling of within-species and between-species confounders, as 
well as account for spatiotemporal covariates such as urban habitat 
composition38. These data are increasingly publicly available and are 
being used in large-scale analyses of disease dynamics (for example, 
refs. 8,39); as such, these analyses may become increasingly possible 
in coming years. Regardless, in these and other analyses, corre-
lated changes in the magnitude and shape of sampling biases (for 
example, towards zoonotic versus non-zoonotic parasites) should 
be taken into account when examining links among anthropogenic 
change, wildlife disease and zoonotic risk.

Methods
Data sources. Phylogeographic data. We used the PanTHERIA dataset40 as a 
backbone for mammal taxonomy and phenotypic traits such as body mass. 
Phylogenetic data were derived from a mammalian supertree41, as used for several 
host–virus ecology studies (for example, refs. 13,20,42). The tree’s phylogenetic 
distances between species were scaled between zero and one. Geographic data were 
taken from the International Union for Conservation of Nature (IUCN) species 
ranges43. For each species, we calculated total range area by adding together the 
areas for the 25 km raster cells in which they were present.

To derive a measure of study effort, which often explains substantial variation 
in parasite diversity20,21, we conducted systematic PubMed searches to identify 
how many publications mentioned a given mammal species, following previous 
methodology44. Domestication status used a sensu lato definition based on whether 
a species has ever been partially domesticated, coded as a binary variable. For 
example, despite being widespread in the wild, the European red deer (Cervus 
elaphus) is coded as ‘domestic’ because it is often farmed, notably in New Zealand45. 
Because we were investigating spatial distributions of species (see above), fully 
domesticated species that do not exist in the wild (for example, cattle, Bos taurus) 
were generally excluded due to their absence from the IUCN species ranges. To 
investigate whether dietary flexibility could affect parasite diversity, following 
previous methodology18, we derived diet diversity by calculating a Shannon index 
from the EltonTraits database proportional diet contents46.

Life history data. To investigate how host life history variation affects parasite 
richness, we used a previously published, mass-corrected PC analysis of life history 
variation across mammal species47. The first two PCs from this analysis, which 
explained 86% of variation in six life history traits47, were used as explanatory 
variables in our models. The six life history traits were gestation length, litter size, 
neonate body mass, interbirth interval, weaning age and sexual maturity age. PC1 
explains 63% of the variance in the six traits, representing a generalizable slow–
fast life history axis. PC2 explains 23% of variance in these traits and represents 
greater investment in gestation time and larger offspring. Both PCs were available 
for all mammals in our dataset. We coded the PCs such that increasing values 
corresponded to ‘faster’ life history (that is, favouring greater reproduction over 
survival).

Urban adaptation data. We identified each species’ habitat preferences using a 
published database of long-term urban adaptation status in mammals18. This 
dataset was compiled using literature searches to identify species that were 
observed inhabiting urban environments; species are either coded as a ‘visitor’ 
or a ‘dweller’, on the basis of whether they rely fully on urban environments to 
survive and reproduce (dweller), or whether they continue to rely on non-urban 
resources (visitor). This approach distinguishes our analysis from previous studies 
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(for example, ref. 5): we use a strict definition of ‘urban-adapted’ species, defining 
them as ‘mammals that survive, reproduce, and thrive in urban environments’, 
rather than basing urban status purely on survey records collected in urban 
settings. All species that were in PanTHERIA but were not in the urban adaptation 
dataset were coded as ‘non-urban’. We used urban adaptation as a binary variable, 
coding species as zero or one, depending on whether it was in the urban adaptation 
dataset. Overall, 180 species in our dataset were coded as a one, denoting that they 
had been observed living off urban resources.

Host–parasite association data. The recently released CLOVER dataset48 is the 
most comprehensive open-source dataset on the mammal–virus network. Here 
we use an expanded version of this dataset that encompasses all parasites, rather 
than restricting to viruses, to complete an analytical study of these taxonomically 
broad parasite data. This dataset was synthesized from four large-scale datasets of 
host–parasite associations, each collected through a combination of web scrapes 
and systematic literature searches20,49–51. These include the Enhanced Infectious 
Diseases Database (EID250); the Host–Pathogen Phylogeny Project (HP320); the 
Global Mammal Parasite Database (GMPD49); and a large-scale database on 
viruses and bacteria and their known hosts51. These contain a range of parasite 
groups, including viruses, bacteria, protozoa, fungi, helminths and arthropods. 
In this conjoined dataset, host–parasite associations were counted according to 
demonstrated compatibility: that is, if a host species had ever been discovered 
infected with a given parasite, it was coded as a one, and all undemonstrated 
associations were assumed absent. In addition to the taxonomic reconciliation 
underlying the CLOVER dataset, we cleaned the parasite names with the R package 
taxize52, removing parasites that were not identified to species level and ensuring 
that no parasites existed under multiple identities. This ensured that no host–
parasite associations were counted twice. We also combined the database with the 
VIRION dataset, a database of viruses that includes GenBank records53, resulting in 
a total 18,967 unique host–parasite associations.

From this conjoined dataset, we derived the following traits for each mammal 
host species in our dataset: (1) total parasite richness: the number of unique 
parasite species known to infect a given host species; and (2) zoonotic parasite 
richness: the number of these parasites that has also been observed to infect 
humans in our dataset. All analyses were repeated for overall parasite numbers 
(for example, total number of zoonoses across all parasite groups) and for specific 
parasite subgroups (viruses, bacteria, protozoa, fungi, helminths and arthropods).

For each analysis, to facilitate model fitting, we eliminated species for which 
there were missing data and then removed all host orders for which there were 
fewer than 20 species or for which less than 1% of species had one or more 
known parasites. Leaving these taxa in did not notably alter fixed effects estimates 
generally but generated unlikely estimates for order-level effects. When combining 
the phenotypic, urban adaptation and parasite datasets, any species with no known 
parasite associations was coded as a zero (that is, a pseudoabsence), under the 
assumption that species with no known parasites are still informative of variables 
associated with low parasite richness14.

Models. Base model. To analyse associations between urban adaptation status 
and parasite richness, we used GLMMs inferred using Integrated Nested Laplace 
Approximation (INLA)54,55. We used two response variables with a negative 
binomial distribution: total parasite richness and zoonotic parasite richness, where 
the second value was a subset of the first. Explanatory variables included: citation 
number (log(x + 1)-transformed); host order (7 levels: Artiodactyla, Carnivora, 
Chiroptera, Lagomorpha, Primates, Rodentia, Soricomorpha); urban adaptation 
status (binary, non-urban/urban); range area (continuous, log-transformed, 
defined above); phylogenetic distance from humans (continuous, scaled 0–1); body 
mass (continuous, log-transformed); domestication status (binary) and two life 
history PCs (PC1 and PC2; continuous, taken from ref. 47). We also applied these 
models to each parasite subset to assess the generality of our parameter estimates. 
To examine how much of the observed urban effects were attributable to research 
effort, we first fitted a model without citation number as an explanatory variable 
and then added it to identify a change in the urban effect. Substantial reduction in 
the urban effect, accompanied by a strong effect of citation number, would imply 
that much of the urban effect occurs because urban-adapted species are better 
studied.

Urban:citation generalized mixed models. Because urban status and citation 
number were highly correlated and showed very different distributions, we fitted 
a generalized additive model (GAM) that was otherwise identical to our GLMMs, 
but with a smoothed term for citations that included an interaction with urban 
status.

Urban–order interaction model. We then compared the base model with one 
including an interaction between host order and urban adaptation status to 
investigate whether the effect of urban adaptation varied taxonomically. We used 
the DIC to measure model fit, with a ΔDIC < 5 denoting competitive models.

Phylogenetic model. For each model, we fitted a phylogenetic similarity effect in 
place of the host order effect to estimate how phylogenetic relatedness between 

species contributed to similarity in parasite richness. We used DIC to identify 
whether this effect improved model fit in the same way as the interaction model.

Multivariate models. To investigate whether urban adaptation status had different 
effects for the richness of different parasite types, we fitted two multi-response 
models using the MCMCglmm package56: one for overall richness and one for 
zoonotic richness. These models used each of the six parasite groups as response 
variables and included the same fixed effects, with different (but correlated) 
slopes for each response. Comparing the model’s estimates for the effect of urban 
adaptation for each parasite allowed us to ask whether specific parasite groups are 
significantly more likely to be associated with urban adaptation status than others.

Zero-inflated models. To investigate whether pseudoabsences were 
disproportionately altering our results, we ran zero-inflated models of parasite 
and zoonotic richness, again using MCMCglmm to control for processes that 
specifically generate zero counts. These models generate two estimates for each 
explanatory variable: (1) the effect on the probability that a species’ parasite count 
is greater than zero (‘zero inflation’) and (2) the effect on parasite count greater 
than zero when accounting for this effect (‘Poisson’). We used uninformative 
priors. Importantly, the Poisson component of this model generates some zeros 
itself, which improves on similar models (for example, hurdle models) in which 
all zeros must be produced by the inflation term. This model allows us to identify 
whether, for example, urban species are simply more likely to have one or more 
known parasites, rather than having a greater overall known parasite richness, 
and whether our choice to code mammals with no known parasites as zero counts 
would influence the results.

Historical rates of parasite discovery. To investigate how differences between 
urban and non-urban wild mammals have accumulated over time, we analysed 
historical rates of parasite discovery and citation effort (from PubMed) between 
1930 and 2020, following the methodology described in ref. 26. Briefly, each 
unique host–parasite association was assigned a ‘discovery date’ (the year of the 
earliest reported association in our dataset, on the basis of either publication year, 
accession year or sampling year depending on the original data source; see ref. 26 
for details). We accessed yearly counts of citations from the PubMed database per 
host species using the ‘rentrez’ package57. We visualized annual trends in novel 
parasite discovery and novel host–parasite association discovery in both urban 
and non-urban mammal species. We then fitted GAMs with a nonlinear effect of 
year (specified as a penalized thin-plate regression spline) to estimate the annual 
species-level mean publications, cumulative publications, parasites discovered and 
cumulative parasite richness, fitting separate models for urban-adapted (n = 146) 
and non-urban (n = 1,365) species in our host–parasite dataset. We visualized 
fitted trends in these metrics to examine how differences in yearly and cumulative 
publication effort and parasite discovery rates have varied between urban and 
non-urban species (Supplementary Fig. 7).

Path analysis. To investigate whether urban mammals had a disproportionately 
high zoonotic richness when accounting for overall parasite richness, we fitted a 
path analysis58 with zoonotic richness as the ultimate response variable, log(overall 
richness + 1) as an explanatory variable, and every other explanatory variable 
described above. We took 1,000 random draws from the posterior distributions of: 
(1) the effect of urban affiliate status on overall parasite diversity, (2) the effect of 
urban affiliate status on zoonotic richness and (3) the effect of overall richness on 
zoonotic richness. This approach allowed us to identify whether urban adaptation 
had a significant positive effect on zoonotic richness when accounting for its effect 
on parasite richness as a whole, informing us as to whether a disproportionate 
number of urban mammals’ known parasites are known zoonoses.

Spatial model. Observed parasite diversity in mammals is highly spatially 
heterogeneous at a global level20,25,59, while the diversity of known urban-adapted 
species is heavily biased towards North America and Eurasia18. Both are driven 
by a combination of geographic variation in sampling effort as well as biotic 
and abiotic factors. To control for these spatial heterogeneities, we fitted spatial 
explanatory variables using three approaches using a SPDE effect in INLA54,55. This 
effect used species’ geographic centroids in their IUCN ranges to control for spatial 
autocorrelation in the response variable according to Matern correlation, where 
species that were closer in space would be predicted to have similar numbers of 
known parasites as a result of sampling bias and biological factors. We first fitted 
one spatial field to the whole dataset to look for overall spatial structuring, and 
we then allowed this spatial effect to vary for urban and non-urban species to 
investigate whether the distribution of known richness varies between these hosts. 
Second, we incorporated species’ presence on each of five continents (Eurasia, 
Africa, North America, South America and Oceania) as binary variables. Third, 
we added absolute latitude (that is, distance from the Equator). For the latter two 
approaches, we also fitted an interaction with urban adaptation to investigate 
whether the effect of urban adaptation status varied across space.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
The CLOVER dataset is available at https://github.com/viralemergence/clover. The 
VIRION dataset is available at https://github.com/viralemergence/virion. All other 
ancillary data are available at https://github.com/viralemergence/UrbanOutputters.

Code availability
The code used here is available at https://github.com/viralemergence/
UrbanOutputters.
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