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Background. Recent Rift Valley fever (RVF) epidemiology in the eastern Africa region is characterized by widening geographic
range and increasing frequency of small disease clusters. Here we conducted studies in the southwestern (SW) Uganda region that
has since 2016 reported increasing RVF activities.

Methods. A 22-month long hospital-based study in 3 districts of SW Uganda targeting patients with acute febrile illness or
unexplained bleeding was followed by a cross-sectional population-based human-animal survey. We then estimated RVF virus
(RVEFV) force of infection and yearly cases using age-structured seroprevalence data and conducted genomic phylodynamic
modelling of RVFV isolates.

Results.  Overall RVF prevalence was 10.5% (205/1968) among febrile or hemorrhagic cases, including 5% (100/1968) with
acute (PCR or IgM positive) infection, averaging 5 cases per month. Community-based seroprevalence of 11.8% (88/743)
among humans and 14.6% (347/2383) in livestock was observed. Expected yearly human RVF cases were 314-2111 per 1369
km® in SW Uganda, up to 3-fold higher than the 0-711 yearly cases in comparable regions of Kenya and Tanzania. Viral
genomic studies identified RVFV lineage C, subclade C.2.2 as the circulating strain in SW Uganda since 2019. Lineage C strain
has undergone recent rapid evolution and clonal expansion resulting in 4 subclades, C.1.1, C.1.2, C.2.1, and C.2.2, that are adept
at establishing endemicity in new territories.

Conclusions. 'We demonstrate an atypical RVF hyperendemic region in SW Uganda characterized by sustained human clinical
RVF cases, unusually high population prevalence, and high number of expected yearly human cases, associated in part with

emergence of new RVFV sublineages.
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Rift Valley fever virus (RVFV) was first detected in Kenya in 1931,
and subsequently across most countries in Africa over the next 70
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years, resulting in severe human and livestock epidemics and se-
rological evidence of endemicity in more than 30 countries [1-3].
In 2000, a severe RVF epidemic occurred in Saudi Arabia and
Yemen in the Middle East, associated with livestock trade from
the horn of Africa [4]. Once introduced to a country, this
mosquito-borne virus becomes endemic in geographic areas sup-
portive of virus maintenance; areas characterized by certain soil
types, low elevation, and low annual rainfall [5, 6]. In endemic
countries, periodic epidemics, precipitated by heavy rainfall and
flooding, are followed by long (4 to > 10 years) interepidemic pe-
riods (IEPs) with minimal disease activity [7, 8].

Studies in East Africa have highlighted 2 mechanisms associ-
ated with RVFV maintenance and disease burden during IEPs
[9-12]. Apart from transovarial virus maintenance and trans-
mission in mosquito eggs, RVFV is also maintained by contin-
uous low-level circulation among wildlife, livestock, humans,
and mosquitoes [10]. It is likely that dominance of this cryptic
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cycling is responsible for the changing epidemiology of RVF
disease, which is characterized by a growing number of small
RVF disease clusters (< 5 human, < 20 livestock cases) that oc-
cur across broader agroecological zones [13]. Unlike major re-
gional epidemics, which are often associated with El Nifo
Southern Oscillation-related extreme weather conditions, the
small disease clusters during the IEP ebb and flow in response
to routine seasonal variation [11-14].

Within eastern Africa, Kenya and Tanzania documented
RVF endemicity decades ago and have been subjected to multi-
country epidemics that also involved Somalia and Sudan,
most recently in 1997-1998 and 2006-2007 [6, 15]. However,
Uganda was not affected by these epidemics, reporting no hu-
man RVF cases even with the global and regional public health
agencies enhanced surveillance during these epidemics [16].
The situation in Uganda changed in 2016 following confirma-
tion of 2 RVF cases in the southwestern Kabale district [12].
Subsequent investigations detected anti-RVFV immunoglobu-
lin G (IgG) antibodies in 13% of humans and livestock, and in-
fectious virus in mosquitoes collected from the district [12].
Between 2016 and 2023, Uganda reported > 40 small human
RVF clusters primarily in the southwestern and central districts
(11, 13, 17, 18].

Here, we investigated the epidemiology of RVF in southwest-
ern (SW) Uganda by conducting both a longitudinal hospital-
based human study targeting patients with acute febrile illness
(AFI) or unexplained bleeding, and a cross-sectional population-
based human-animal survey.

METHODS

Study Area and Design
Two studies were conducted in the SW Uganda districts of
Isingiro, Kabale, and Rubanda: a hospital-based human prospec-
tive study targeting patients > 10 years old with AFI and/or un-
explained bleeding, and a cross-sectional community-based
human-animal study. The 22-month (September 2021 to July
2023) study enrolled AFI patients at Kabale Regional Referral
Hospital in Kabale District, Hamurwa Health Centre in
Rubanda District, and Rwekubo Health Centre in Isingiro
District. Patients were enrolled if they exhibited undifferentiated
fever (> 37.5°C) or a history of fever within the last 4 weeks and a
negative malaria test. Additional criteria included unexplained
bleeding or severe illness persisting for > 7 days despite treat-
ment. To check coinfection, 20% of the malaria-positive partic-
ipants were also enrolled. Our target sample size was 707
participants per site assuming a human 8% RVFV prevalence,
with 80% power, 2% precision, and a 95% confidence level [12].
The cross-sectional survey was conducted in October to
November 2023, using a 2-stage randomization approach.
First, 10 subcounties were randomly selected across the 3 dis-
tricts, and the number of households sampled within each

subcounty allocated based on population density [19].
Subsequently, households were selected using randomly generat-
ed global positioning system coordinates. At the household, 1 in-
dividual aged > 1 year was randomly selected, interviewed, and
blood sample collected. For a selected child (aged < 10 years), a
parent or guardian was interviewed. For households with live-
stock, a maximum of 4 animals of each species (goats, cattle,
and sheep) were randomly sampled. The target sample sizes, cal-
culated using estimated RVF seroprevalence of 13% in humans,
17.7% in cattle, 3.7% in sheep, and 4.5% in goats, and factoring
a 10% household nonresponse rate, was 982 humans and 2476
livestock [12].

Data and Sample Collection

After consenting, participants were clinically examined and both
clinical, demographic, and risk factor data electronically collect-
ed in Research Electronic Data Capture (REDCap) software [20].
Approximately 5 mL of whole blood were collected from each
participant. Harvested sera and blood clots were aliquoted and
shipped to Uganda Virus Research Institute and stored at
—80°C for subsequent serological and molecular testing.

RVFV Nucleic Acid Detection

Viral RNA was detected from serum using a previously published
protocol [21]. Briefly, RNA was extracted using the MagMAX
magnetic bead system (Life Technologies) and amplification
conducted using the following primer and probe set:
5-TGAAAATTCCTGAGACACATGG-3" (RVFL-2912fwdGG),
5-ACTTCCTTGCATCATCTGATG-3"  (RVFL-2981revAC),
and FAM-5-CAATGTAAGGGGCCTGTGTGGACTTGTG-
3’-BHQ (RVFL-probe-2950), on an ABI Quant Studio 5 real-time
polymerase chain reaction (PCR) platform (Thermofisher
Scientific).

Anti-RVFV Antibody Detection

Sera were screened for total anti-RVFV antibodies (IgM and
IgG) using a previously described protocol [12]. Briefly, heat-
and detergent-inactivated sera were screened for RVFV total
antibodies using a competition multispecies test designed to
detect antibodies directed against the RVFV nucleoprotein in
serum and plasma. The titers and the cumulative sum of optical
densities for each dilution (SUMOD) minus the background ab-
sorbance of uninfected control antigen (adjusted SUMOD) were
recorded. Samples were considered positive if the titer was 1:400
or above and the adjusted SUMOD and titer exceeded preestab-
lished conservative cutoff values of >0.45 for IgM enzyme-
linked immunosorbent assay (ELISA) and > 0.95 for IgG ELISA.

Estimating RVFV Force of Infection in SW Uganda

To compare the burden of RVFV infection in SW Uganda with
adjacent regions, we compared age-stratified RVF population
prevalence from our study (excluding hospital study) with 4
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similar studies previously conducted in Kenya and Tanzania
[13, 22, 23]. Each study collected data on individual age,
RVFV serological status, and geographic location. Individuals
were assigned to 20 arcminute grid cells (roughly 37 km X
37 km in our study region) that encompassed our study region.
Seventy-five grid cells containing serological data from at least
20 individuals were used as cutoff for inclusion. These gridded
serosurvey data were used to perform 3 analyses: (1) force of in-
fection (FOI) for each grid cell using the age-structured seros-
urvey data; (2) fit 2 gamma density functions to the FOI
estimates, 1 for grid cells within the study area; and (3) used
FOI estimates to calculate expected number of yearly RVF cases
in each grid cell.

Estimating FOI

We estimated FOI for each grid cell using maximum likelihood,
assuming (1) the FOI was constant over time and across age
classes; (2) disease-specific mortality was negligible; and (3)
that seroreversion was negligible [22, 24]. The proportion of
the population in each age class, a, that was seropositive, was
described by the following function:

P(a) =1 — exp{—ia}, (1)

where a was measured in years and A is the FOI The likelihood
of observing x; seroprositive individuals with corresponding
age class i and 1 —x; seronegative individuals in age class i
across age classes was:

L) = ﬁ P(a;) *(1 = P(a;) )" (2)
i=1

where x; is the serostatus {0, 1} of individual i and g; is the age class,
in years, of the ith individual. We maximized the negative loga-
rithm of Equation (2) with respect to A in R using a variant of sim-
ulated annealing within the built-in function “optim” [25, 26].

Quantifying Distribution of FOI

To more rigorously compare the distribution of FOI experi-
enced by humans within SW Uganda to that experienced else-
where in Tanzania and Kenya, we fit gamma density functions
to the FOI data for each study region. Specifically, we used max-
imum likelihood to estimate the shape (a) and rate (f) param-
eters for gamma distributions fit to: (1) the FOI estimated for
grid cells in Uganda, and (2) the FOI estimated for grid cells
in Kenya and Tanzania. Using the simulated annealing in “op-
tim” and estimated shape and rate parameters, we calculated
the mode of the gamma distribution in each case as

0, la<1

Mode(A) = OCTZl’ a>1

Estimating Expected Yearly RVF Case Counts
Expected RVF case counts were calculated by multiplying the
FOI for each grid cell with the estimated population of

seronegative humans in that cell. Human population estimates
were downloaded from the WorldPop dataset (https:/hub.
worldpop.org/) of 2020 (most recent) [27], converting density
data to human population counts, and then aggregating the
count data to the 20 arcminute grid cell size. All manipulation
of raster data used functions from the ferra R package [28].

Whole-Genome Sequencing and Phylogenetic Analysis of RVFV Isolates
High throughput next-generation sequencing was performed on
4 of the 10 RVF PCR-positive samples with cycle threshold (Ct)
<25 (samples CD300/Kabale1-2022, CD301/Rubandal-2022,
CD304/Rubanda2-2023, and CD532/Isingiro1-2023) using a
protocol described previously [29-31]. Briefly, RNA was extract-
ed from blood or serum using 5X Magmax 96 Viral Isolation kit
and libraries prepared following unbiased shotgun method.
Samples were sequenced using RVFV-specific primers designed
from Uganda-specific RVFV sequences and the ARTIC protocol
[29, 30]. Consensus genome sequences were constructed using
the ARTIC bioinformatics protocol using RVFV-specific config
files to a RVF reference genome sequence (GenBank accession
No. MG972978).

Genomic Data Retrieval, Filtering, and Lineage Assignment
Publicly available RVFV sequence data from the National Center
for Biotechnology Information (NCBI) database (search limited
to Uganda) were combined with data generated from this study
[32]. We successfully retrieved genomic sequence data for the 3
fragments: S (n =33), M (n=24), and L (n = 30). For each seg-
ment sequence dataset, we determined RVFV lineages using the
lineage assignment tool [33].

Phylogenetic Analysis

Multiple sequence alignment of each dataset was performed us-
ing MAFFT [34], followed by manual editing using Aliview
[35] for correct codon alignment. We inferred the best substitu-
tion models using ModelTest-NG [36] and identified HKY + G4,
GTR + I, GTR + G4 as optimal for the S, M, and L segments, re-
spectively. We incorporated these evolutionary models in maxi-
mum likelihood phylogenetic tree inference using IQ-TREE
[35] while estimating branch support values using ultrafast boot-
strapping procedure (-bb 1000). To deduce the temporal signal
of the sequence data, we regressed the genetic distances and
the sampling dates (in years) through a root-to-tip plot
(Supplementary Figure 1). We further utilized the sampling dates
to compute time-scaled phylogenetic trees using TreeTime [37].
Our root-to-tip reconstructions indicated that the L segment data
contained sufficient temporal signal (correlation coefficient =
0.99 and R* = 0.99) to warrant Bayesian inference. We therefore
used the L segment sequence data to perform phylogeographic
analysis. To deduce the spatial diffusion of RVFV in Uganda,
we utilized continuous phylogeographic reconstruction in
BEAST [38], with incorporation of uncorrelated log-normal
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Figure 1. Epicurve (A) and clinical characteristics (B) of acute Rift Valley fever cases detected at 3 health facilities in southwestern Uganda between September 2021 and

July 2023 (n = 100).

tree branching and skyline coalescent demographic models.
Using tidygeocoder [38], we geocoded the geographical sam-
pling locations into longitude and latitude and used the coor-
dinates as traits in a Cauchy distribution model for continuous
phylogeographic inference. BEAST was run with 100 million
Markov chain Monte-Carlo steps, sampling every 10 000th
step. Effective sample size values (> 200) were assessed using
Tracer [39] to ensure proper convergence and mixing of the
outputs. We used Tree Annotator [40] to retrieve and annotate
the maximum clade credibility tree. We extracted the spatial-
temporal information embedded in these phylogeographically
reconstructed trees using the seraphim package in R [39] to as-
certain RVFV transmission in Uganda.

Ethical and Administrative Approvals

Ethical approvals for this study were provided by the Uganda
Virus Research Institute Research Ethics Committee (study
No. GC/127/849) and the Uganda National Council for
Science and Technology (study No. HS1713ES). The study
was performed in accordance with the principles of Good
Clinical Practice following the Tri-Council guidelines.
Written informed consent was obtained from all the study
participants.

RESULTS

Sustained Detection of Acute RVF Cases in SW Uganda

Overall, 2711 participants were enrolled in both the hospital-
based (n=1968) and cross-sectional community (n=743)
studies. Between October 2021 and July 2023 (22 months), a
total of 1968 febrile patients were enrolled at 3 health facilities

located in Isingiro, Kabale, and Rubanda districts, out of which
100 (5.1%) were clinically positive by either viral RNA (n =6),
antiviral IgM antibodies (n=90), or both (n=4). Of these
100 clinically positive participants, 90 were managed as outpa-
tients while 10 had severe disease requiring hospitalization.
The major clinical manifestations included fever (92%), head-
ache (84%), joint pains (64%), chills (61%), fatigue/weakness
(53%), and bleeding (10%) (Figure 1). None of the participants
died. Interestingly, there was sustained detection of clinical
RVF cases throughout the 22-month period, averaging 5
(range, 1-13) cases per month, but ranging between 0% and
20% of AFI patients weekly as illustrated in Figure 1. No clin-
ically positive RVF cases (viral RNA or IgM positive) were de-
tected in the cross-sectional study (n =743) conducted across
the 3 districts.

Human and Livestock RVF Seroprevalence

Of the 2711 human participants tested for RVFV RNA, IgM, or
IgG antibodies, 293 (10.8%) were positive in 1 of these tests, in-
cluding 205 of 1968 (10.4%) from the prospective hospital-
based study and 88 of 743 (11.8%) from the cross-sectional
study. We observed clustering of acute cases near the 3 hospi-
tals where surveillance was conducted (Figure 2A and 2B,
red dots), whereas the distribution of IgG-positive participants
was more widespread across the 3 districts (Figure 2B, green
dots). Of 2383 livestock tested from the cross-sectional study,
347 (14.6%) were positive for anti-RVF IgG antibodies, includ-
ing a significantly higher (P <.05) seroprevalence in cattle
(33.8%, 230/681) than in goats (6.7%, 78/1170) or sheep
(7.3%, 39/532).
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Figure 2. Spatial distribution of human acute and older RVF cases detected in the hospital-based and community studies. RVF acute (PCR or IgM positive) cases (red circles)
older (IgG positive) cases (green circles) as detected in the hospital-based (n = 1968) (A) and cross-sectional community (n = 743) (B) studies in the southwestern Uganda
region. The RVF-negative cases are shown as grey circles in both studies. Insert, map of Uganda showing the southwestern Uganda region. Abbreviations: IgM, immuno-

globulin M; PCR, polymerase chain reaction; RVF, Rift Valley fever.

RVFV Force of Infection and Expected Yearly RVF Cases

To determine the burden of RVFV infection in the region,
we compared the FOI at our study sites to that of adjacent re-
gions in Kenya and Tanzania, using data compiled from pre-
vious serosurveys [13, 22, 23]. Although the range of FOI

estimates was similar between the 2 regions, the distributions
differed (Figure 3A), as did the expected yearly RVF cases
(Figure 3B). Specifically, fitting gamma density functions to
the FOI estimates revealed a modal value of 0.00096 infections
per year per susceptible individual in SW Uganda but 0 in
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Figure 3. Frequency distribution of Rift Valley fever virus (RVFV) force of infection expressed as infections per year per susceptible individual (A), expected yearly RVF cases
per grid cell (B), and gamma density functions fit to the force of infection estimates (C). The gamma density functions fit to force of infection estimates from each region show
that the characteristics of the distributions are different, driven by consistent virus circulation during interepidemic periods in southwestern Uganda, and minimal circulation

in adjacent regions of Kenya and Tanzania.

Kenya and Tanzania (Figure 3C). This difference in the
shape of the distributions showed that most human popula-
tions in SW Uganda were exposed to RVFV whereas those
outside the region were not exposed to RVFV. These results
are consistent with widespread, sustained circulation of
low-to-medium levels of RVF disease in SW Uganda but iso-
lated and sporadic episodes of intense RVFV infection in
Kenya and Tanzania.

After transforming estimated FOI to expected RVF case
counts in each grid cell (1369 km?), we estimated that the SW
Uganda region could expect 314-2111 yearly RVF cases per
grid cell, whereas the Kenya and Tanzania region could expect
0-711 yearly RVF cases per grid cell (Figure 4).

Circulating RVFV Lineages

From the 10 PCR-positive samples, whole-genome sequencing
was successful for 4 samples: 2 from the Rubanda and 1 each
from Isingiro districts and Kabale districts (Supplementary
Table 1). The samples were collected between 3 October 2022
and 30 January 2023, from male participants, 26-30 years
old. The S (nonstructural genes), M, and L segments of the iso-
lates aligned with RVFV lineage C, subclade 2.2 (Figure 5 and
Supplementary Tables 2, 3, and 4).

In the RNA-dependent RNA polymerase (RdRp) and glyco-
protein genes, we identified 110 and 80 single nucleotide poly-
morphisms (SNPs), respectively, which were specific to the
subclade C.2.2. In addition, 23 defining SNPs in each of
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Figure 4. Estimated Rift Valley fever virus (RVFV) force of infection (FOI) for different spatial locations in Kenya, Uganda, and Tanzania (A) and translation into expected
yearly RVF cases (B). The figure illustrates higher RVF circulation the southwest Uganda region, which has a high FOI and large human population, leading to high expected

yearly RVF cases.

nonstructural (NSs) and nucleoprotein genes were identified.
The key substitutions in the RdRp, nucleoprotein, glycoprotein,
and nonstructural genes are shown in Table 1.

Evolution of RVFV Lineages in Uganda

We examined the evolutionary relationships of RVFV lineag-
es circulating in Uganda using genomic sequence data collect-
ed between 1944 and 2023. Maximum likelihood phylogenetic
trees showed that between the years 1940 and 2000 the
circulating strains were lineages C, K, and M (Figure 5).
Phylogenetic inference showed clustering of lineages K and
M followed by emergence of lineage C in several parts of the
country from around 1990. Lineage C, shown to be predom-
inant in Uganda since 2015, has undergone expansion into
distinct sublineages C.2.1 and C.2.2 [14]. Notably, sublineage
C.2.1 emerged in the country during the first reported human
outbreak in 2016 followed by expansion to sublineage C.2.2.
Interestingly, we observed long branches in a cluster of 3 se-
quences isolated in 2018 belonging to lineage K (here reported
as K.1.2) sharing ancestry with the livestock vaccine
Smithburn isolated in Entebbe in 1944 (Figure 5). Although
there is a huge gap in sampling between 1950s and 2000s
(a potential bias) the temporal signals as examined by regress-
ing root to tip genetic distances provided sufficient statistical
support for the current Bayesian evolutionary analysis
(Supplementary Figure 1).

Phylogeographic Dispersal of RVFV Lineages in Uganda

We established sufficient temporal signal in the large segment
sequences and applied continuous phylogeographic analysis
to understand the dispersal dynamics of RVFV lineages in
Uganda. Although our genomic dataset was limited in terms
of the number of sequences sampled (n = 30), the phylogeo-
graphic analysis shows that RVFV lineages tended to disperse
from the SW Uganda region. The dispersal diffusion of
RVFV lineages showed several introductions of the virus
through the SW Kabale and Isingiro districts and eastern
Busia district (Figure 6). We showed that the time of the
most recent ancestor (tMRCA) of RVFV lineages in Uganda
may have been over 100 years ago in 1921 (95% highest poste-
rior density [HPD], 1899-1940). The evolution rate of the me-
dium segment is 3.57E-4 (95% HPD, 2.62E-4-4.65E-4)
substitutions per site per year. Our continuous phylogeo-
graphic analysis aligns well with the patterns of livestock move-
ments in the cattle corridor, which stretches from southwestern
to northeastern Uganda.

DISCUSSION

To our knowledge, this is the first study describing an RVF hy-
perendemic region characterized by sustained detection of hu-
man clinical RVF cases visiting hospitals, unusually high
population prevalence among humans and livestock, and esti-
mated FOI consistent with high expected annual human RVF
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Figure 5. Phylogenetic inference of RVFV lineage evolution in Uganda. Maximum likelihood phylogenetic trees were reconstructed using 10-TREE: (A4) L segment (n = 30),
(B)M segment (n = 24), (C) NP (n = 33), and (D) NS gene sequences from the S segment. The tips of the trees are colored using the RVFV lineage information from assignment
and labelled by accession numbers and sampling dates (year). Statistical support for tree nodes is indicated by bootstrap values. Abbreviations: NCBI, National Center for
Biotechnology Information; NP, nucleoprotein; NSs, nonstructural; RVFV, Rift Valley fever virus.

case counts across the region. Over a period of almost 2 years,
5% (100/1968) of patients presenting with AFI or unexplained
bleeding at 3 hospitals in SW Uganda were positive for RVF,
averaging 4.5 cases per month and up to 20% of febrile cases
per week. While none of the patients died, they exhibited classic
RVF clinical manifestations, including headache, joint pains,
and bleeding syndromes, with 10% requiring hospitalization

for intensive clinical care. An additional 5% (105/1968) of the
enrolled patients had prior exposure to RVFV, demonstrated
by presence of antiviral IgG antibodies, giving an overall RVF
disease prevalence of 10.5% (205/1968). As expected, spatial
mapping showed clustering of cases around the hospitals, sug-
gesting even more widespread RVFV infection given the chal-
lenges associated with seeking health care in rural Africa.
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Within the community, human and livestock RVFV sero-
prevalences were 11.8% (88/743) and 14.6% (347/2383), respec-
tively. Our similar studies in the central highlands of Kenya and
the eastern Democratic Republic of Congo failed to detect acute
RVF cases among AFI patients, while in communities, human
and livestock RVFV prevalences were 3-6-fold lower than in
SW Uganda [41]. When compared to findings from the

Table 1. Key Substitutions Observed in the RNA-Dependent RNA
Polymerase, Glycoprotein, Nucleoprotein, and the Small Nonstructural
Gene

Substitutions

F23Y, R249K, S278D, S278N,
A288V, V302I, V349l, S411N,
D446N, S470N, A663T, V1333I,
11773V, K1906R, D1984N

Segment Gene

Large RNA-dependent RNA
polymerase (RdRp)

randomized population-based seroprevalence studies conduct-
ed elsewhere in Africa and the Middle East, the RVFV preva-
lence in SW Uganda was 2-6-fold higher [22, 41-45].
Comparing the distribution of RVFV FOI estimates between
human populations in SW Uganda with adjacent regions in
Kenya and Tanzania showed an interior mode of 0.00096 in
SW Uganda while it was 0 in other regions, indicating that
SW Uganda had persistently nonzero FOI, while most areas
in Kenya and Tanzania had zero or near zero FOIs. Overall,
these findings confirm the existence of sustained
low-to-medium levels of RVF cases in SW Uganda, and likely
elsewhere in other countries where the virus is endemic.
Virus genomic evolution and transmission studies showed
that the RVFV strains circulating in SW Uganda since 2019, in-
cluding isolates from the current study, belong to lineage C
sublineage C.2.2, which was first detected in Kenya during
the 2006-2007 RVF epidemic [33, 46]. Previous studies showed
that lineage C is the predominant virus circulating in the east-
ern Africa region since the 1990s [47]. First detected in
Zimbabwe in 1976, lineage C virus was introduced to Kenya,

thereafter undergoing clonal expansion during the large

RVFV diffusion

Medium  Glycoprotein 160V, D95N, L232Q, L368Q, D566G,
1631V, S1059T, T1183I
Small Nonstructural (NSs) F23I, R24K, Y33F, N133S, T152A,
A167V, V217A, 1242V, E253G
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Figure 6. Continuous phylogeographic analysis of RVFV lineages in Uganda using complete L segment sequences (n = 30). Dispersal history of RVFV lineages summarized
by an MCC tree retrieved and annotated from 900 posterior trees sampled from the posterior distribution of the continuous phylogeographic analysis. A, MCC tree retrieved
from the Bayesian phylogenetic inference based on the medium segment genomic sequences and highlighting the clustering of the different lineages of the virus. The tips of
the tree are colored according to lineage information and labels show the accession numbers and sampling time in years. A, Insert shows root-to-tip plot illustrating re-
gression of the genetic distances and the sampling time (year) of the isolates. B, Nodes of the trees are colored according to the time of occurrence, and oldest nodes
are plotted on top of youngest ones. The light grey shaded areas in the map depict lakes. Abbreviations: MCC, maximum clade credibility; NCBI, National Center for

Biotechnology Information; RVFV, Rift Valley fever virus.
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2006-2007 epidemic and creating distinct subclusters.
Phylogenetic analysis focusing on lineage C indicates a variant
undergoing evolution at a relatively increased rate, producing 4
sublineages, C1.1, C1.2, C2.1, and C2.2, attributed to silent cir-
culation during IEPs. Phylogeographic analysis showed the
ability of lineage C to establish endemicity in new territories,
likely therefore catalyzing the widening geographic range of
RVF clusters recently described [13]. Apart from virus strains,
other factors that likely contribute to RVF hyperendemicity in
SW Uganda include climatic changes and anthropogenic factors
such as land use change and environmental degradation [13].

This study had some limitations. In conducting FOI compar-
isons, we assumed that FOI is constant over time. However, it is
highly plausible that FOI can shift over time for a variety of rea-
sons, including changing population immunity. The conse-
quence would be that our FOI estimates was biased (high)
because of recent shift in disease dynamic in Uganda.
However, the measure allowed us to convert spatially explicit
seroprevalence data to a comparable quantitative measure,
which is a realistic reflection of the changing disease landscape
in Uganda.
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