
A global-scale dataset of bat viral
detection suggests that pregnancy
reduces viral shedding
Evan A. Eskew1,2, Kevin J. Olival1, Jonna A. K. Mazet3 and Peter Daszak1,4

1EcoHealth Alliance, New York, NY, USA
2Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
3School of Veterinary Medicine, University of California, Davis, CA, USA
4Nature.Health.Global., Inc., Tallman, NY, USA

 EAE, 0000-0002-1153-5356; KJO, 0000-0003-3211-1875; JAKM, 0000-0002-8712-5951;
PD, 0000-0002-2046-5695

Understanding viral infection dynamics in wildlife hosts can help forecast
zoonotic pathogen spillover and human disease risk. Bats are important
reservoirs of zoonotic viruses, and bat metapopulation dynamics, seasonal
reproductive patterns and other life-history characteristics might explain
temporal variation in the spillover of bat-associated viruses. Here, we
analyse reproductive effects on viral dynamics in free-ranging bat hosts,
leveraging a multi-year, global-scale viral detection dataset that spans
eight viral families and 96 bat species from 14 countries. Bayesian models
revealed that pregnancy had a negative effect on viral shedding across
multiple data subsets, and this effect was robust to different model
formulations. By contrast, lactation had a weaker influence that was
inconsistent across models. These results are unusual for mammalian hosts,
but given recent findings that bats may have high individual viral loads
and population-level prevalence due to dampening of antiviral immunity,
we propose that it would be evolutionarily advantageous for pregnancy
to either not further reduce immunity or actually increase the immune
response, reducing viral load, shedding and risk of fetal infection. This
novel hypothesis would be valuable to test given its potential to help
monitor, predict and manage viral spillover from bats.

1. Introduction
The emergence of Ebola [1,2], SARS-CoV [3], SARS-CoV-2 [4] and other
zoonotic viruses has highlighted the urgent need to understand the pro-
cesses that result in their spillover from animals to humans [5–9]. Because
the exposure pathways that drive spillover are partially shaped by the
prevalence and intensity of infection within animal hosts [6], understand-
ing natural viral dynamics in wildlife may improve our ability to forecast
and manage zoonotic disease risk. Bats are particularly important wildlife
reservoirs of zoonotic viruses, including Marburg and other filoviruses,
Nipah, Hendra, SARS-CoV, MERS-CoV and SARS-CoV-2 [4,10–13]. Further-
more, some bat-associated viruses, such as Nipah and Hendra, show seasonal
patterns of infection in intermediate hosts and humans [13–15]. These findings
imply there are predictable elements of spillover and suggest that studying
viral infection and shedding in bats may be valuable in developing strategies
to prevent human disease [16,17].

Seasonality of bat-associated viral outbreaks may be linked to features
of bat life history and reproductive ecology, such as metapopulation struc-
ture, migration or synchronous birthing [12,13,18–20]. For example, some bat
species form large maternity colonies, which increase local population density
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and intraspecific contact rates, thus increasing the potential for pathogen transmission and providing an ideal context for
researchers to conduct viral sampling [18,21,22]. Viral infection in juvenile bats following the birthing period has attracted
special scrutiny because the seasonal influx of susceptible juveniles could facilitate pathogen maintenance within bat popula-
tions [18,21–26]. Conversely, less attention has been given to maternal infection across reproductive states. Previous work has
reported increased seropositivity [27–29] and viral detection [23,30] in pregnant and/or lactating female bats. However, such
studies are often restricted to sampling a relatively small number of bat host species and typically consider only a single viral
pathogen, limiting their generalizability. Our understanding of bat viral dynamics during the energetically demanding periods
of pregnancy and lactation [31,32] would be enhanced by analysis of a broader range of host species and pathogens.

Here, we use Bayesian models to examine the effects of reproductive status on viral detection using a global-scale dataset
from bats sampled across 14 countries. We analyse viral detection data from eight viral families across 96 bat species belonging
to nine families. Leveraging this large dataset, we explicitly account for important sources of variation, such as geographic
region, specimen type and different viral assays, to identify broad relationships between reproductive state and viral shedding
across the order Chiroptera.

2. Methods
(a) Sample collection
The majority of viral data analysed here were from biological samples collected and tested as part of the PREDICT-1 project
from 2009 to 2014 [33]. PREDICT-1 collaborated with partners in more than 20 countries throughout Asia, Africa and Latin
America to conduct virus surveillance, operating with the primary goals of public health capacity strengthening and pathogen
discovery [34]. Sampling focused on human–livestock–wildlife interfaces in emerging infectious disease hotspots that were
thought to represent a high risk of viral spillover of public health relevance [35,36]. Field teams wearing appropriate personal
protective equipment and trained in field biosafety protocols captured, sampled and released all animals under veterinary
supervision, with guidance from relevant local authorities and an IACUC protocol from the University of California, Davis
(protocol number 16048) [37]. Here, we only use data from sub-adult and adult female bats (electronic supplementary material,
table S1, figure S1) [33].

At the time of sample collection, individual bats were identified to the lowest taxonomic specification possible and were
sexed. Pregnancy and lactation status (yes/no) data were collected for female bats by gentle palpation of the abdomen and
observation of milk production, respectively, following standard protocols [37,38]. Non-invasive oral swabs, faecal or rectal
swabs, urine or urogenital swabs and blood samples were collected for later viral testing. Tissues (e.g. liver and spleen)
were collected in rare cases when hunted bats were sampled or animals required euthanasia. As most specimens analysed
in our study were swabs (oral, rectal or urogenital) or directly sampled excreta (faeces and urine) that are likely routes of
viral exposure to humans and other hosts, we believe that our confirmed positive samples approximate the occurrence of bat
viral shedding. For oral and rectal swabs, viral detection may not always indicate direct infection of hosts and could instead
represent viral sequences derived from food items, but this scenario is likely to be rare. Samples were primarily collected into
either NucliSENS Lysis Buffer (bioMérieux SA, Marcy-I’Étoile, France) or TRIzol [39,40], both of which inactivate viruses but
allow for their molecular detection. Samples were frozen in liquid nitrogen in the field and safely transferred to in-country and
US-based laboratories for storage at −80°C until viral testing.

(b) Viral testing
Broadly reactive consensus PCR (cPCR) was used to detect both known and novel viruses [41]. Consensus PCR assays were
targeted at either viral genus or family (details given in electronic supplementary material, table S2), with multiple testing
protocols sometimes employed for the same focal viral taxon (e.g. two different assays were used for coronavirus detection).
All cPCR-positive samples were confirmed through sequencing and assigned a viral taxonomic designation by the PREDICT
global laboratory team [40,42]. We acknowledge that the detection of viral nucleic acids through PCR does not necessarily
indicate the presence of infectious virus, as could be established with alternative methods such as plaque assays [43,44]. The
PREDICT project prioritized cPCR as an approach that enabled rapid, biosecure and low-cost viral detection across a range of
viral families and laboratories around the world.

(c) Bayesian statistical modelling
We used Bayesian models to analyse the association between reproductive status and viral infection in female bats while
controlling for multiple potential confounders that are inherent in a complex, multi-country surveillance dataset. Our outcome
of interest, viral detection, was the result (positive or negative) of sequence-confirmed viral cPCR tests on field-collected bat
specimens. We modelled the association between female reproductive status and viral detection using a binomial distribution
with a logit link function (electronic supplementary material, figure S2).

We performed initial cleaning and filtration steps on viral testing data to ensure quality and consistency (electronic supple-
mentary material, figure S1). For example, we used only data from wild bat samples and excluded data from animals sampled
in other settings (e.g. wildlife markets) because the stress associated with captivity could alter viral dynamics. In addition,
while multiple discovery approaches can generate valuable viral diversity data [41], we sought to reduce potential bias in
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discovery efficacy by working solely with cPCR data, excluding results from high-throughput sequencing, real-time PCR or
serology methods. We also excluded data on viral groups that never resulted in viral detection in female bats. While these data
could have been incorporated into our modelling efforts, they were ultimately uninformative and would bias downwards our
estimates of overall viral detection probability.

After filtration (per above), data remained heterogeneous, with samples collected across host species, time, space and other
important dimensions. We account for this remaining variability in our models using varying effects. First, our primary
statistical models included varying intercepts and slopes (for pregnancy and lactation effects) for each bat host species
(electronic supplementary material, figure S2). This approach allowed us to explicitly account for the fact that baseline viral
detection and reproductive effects on viral detection could vary across host species. Varying intercepts and slopes also help
to provide generalizable inference since this model structure allows us to recover community-level estimates for the intercept,
pregnancy effect and lactation effect parameters (i.e. these community-level parameter estimates represent the expected values
for a typical bat species). Critically, the inclusion of varying slopes by host species prevents the reproductive effects observed
in heavily sampled species from dominating inference. In essence, by fitting varying intercepts and slopes by host species, we
make use of data from all bat species to gain insight on the bat community generally. We emphasize that with this model
formulation, the model intercept corresponds to the expected viral detection probability in non-reproductive (i.e. non-pregnant
and non-lactating) female bats.

In addition, our primary statistical models incorporated varying intercepts for the following data clusters: year of sample
collection (which ranged from 2006 to 2014 because of the inclusion of archived specimens collected prior to the start of the
PREDICT-1 project in 2009; see also [42]), country of sample collection, specimen type, the viral testing protocol used and
the diagnostic laboratory conducting testing (electronic supplementary material, figure S2). Table 1 provides a justification
for the inclusion of each varying intercepts cluster. All varying intercepts clusters were modelled using normal priors with
a mean of zero, such that the varying intercept values represent deviations from the model’s global mean [45]. Standard
deviation parameters for these clusters were modelled using an exponential prior with a rate of 1. We implemented our varying
intercepts clusters using a non-centred parameterization strategy to improve sampling efficiency and reduce bias [46]. This
implementation recovers parameter estimates identical to those that could be obtained using a centred parameterization but
improves the geometry of the posterior distribution for certain types of MCMC sampling problems. In sum, by incorporating
these varying intercepts, we control for important sources of variation in our data (table 1), thereby making more robust general
inferences about viral dynamics in female bats.

Our varying intercepts structure for viral testing deserves special attention given its importance to our modelling results.
Briefly, every cPCR test we analysed is associated with both a general viral test type (i.e. the viral group that was tested for)
and a specific viral testing protocol (i.e. the particular assay that was used). Using general viral test type as a control variable in
our models would account for differences in detection across viral groups, but it would not account for differences in sensitivity
or specificity associated with viral testing protocols. Therefore, our viral testing intercepts cluster consists of unique intercepts
for each combination of general test type and specific testing protocol that was observed in the data (electronic supplementary
material, table S2).

We chose to construct and fit a small suite of models that each contain the predictor variables that were considered
relevant to our investigation a priori [47], namely the reproductive status variables. Conveniently, in a Bayesian setting, priors
centred at zero have the same regularizing properties as shrinkage methods like ridge regression that are often used to control
model complexity and reduce overfitting in large models [45,47,48]. This approach avoids some of the pitfalls associated with
problematic ecological modelling strategies, including well-known issues with inference resulting from stepwise and all subsets
model selection [48–51]. Thus, we initially fit the varying intercepts and slopes model using the full female bat viral detection
dataset (i.e. the All Viral Families dataset; electronic supplementary material, table S1, figure S1). Next, to determine whether the
effects of pregnancy and lactation on viral detection might differ depending on the viral taxa in question, we fit the varying
intercepts and slopes model on data subsets representing test results from single viral families. We only fit single viral family
data subsets when the subsets contained at least 200 viral tests from both pregnant and lactating bats to ensure relatively robust
sample sizes across reproductive conditions. As a result, we fit additional models using data subsets for the viral families
Coronaviridae and Paramyxoviridae. The Bayesian model we fit to the single viral family data subsets was identical to the
model used to fit the All Viral Families dataset (electronic supplementary material, figure S2).

While we viewed the inclusion of varying intercepts and slopes as critical modelling components to appropriately control for
variation in our data, we also constructed and fit simpler, alternative Bayesian models to verify our results were robust to model
choice. First, we formulated a Bayesian model with varying intercepts but no varying slope effects (electronic supplementary
material, figure S3). In this model, there are varying intercepts corresponding to each bat host species, but the pregnancy
and lactation effects are fit by pooling information across all bat host species rather than by fitting species-specific pregnancy
and lactation effects (electronic supplementary material, figure S3). In addition, we constructed a model without any varying
effects (electronic supplementary material, figure S4). This model had only main effects of pregnancy and lactation on viral
detection (electronic supplementary material, figure S4), and thus we stress that it does not control for any of the major sources
of variation in our biosurveillance dataset (table 1). We fit these two alternative model types to all three datasets previously
described (the All Viral Families dataset as well as the Coronaviridae and Paramyxoviridae data subsets).

We specified and fit all models using the Stan programming language [52] through the ‘cmdstanr’ package interface [53]. We
set Stan’s ‘adapt_delta’ and ‘step_size’ parameters to 0.99 and 0.5, respectively, to improve sampling of posteriors with difficult
geometries at the expense of longer runtimes. For all model fits, we used four independent Markov chains, each with 3500
iterations. Given that 1000 iterations were used as warmup, we based our inferences on a total of 10 000 samples from each
model (2500 post-warmup iterations each from four chains). We performed post hoc model diagnostics to ensure good model
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fits. These checks included visual inspection of chains using trace plots and confirmed convergence of the R statistic towards
one for all parameters [54]. We used the ‘cowplot’ [55], ‘dotwhisker’ [56], ‘ggplot2’ [57], ‘ggridges’ [58] and ‘rethinking’ [45,59]
packages to summarize and visualize model results. We report parameter estimates using posterior means and 95% highest
posterior density intervals (HPDIs) to support model inference. In addition, where relevant, we draw attention to the proportion
of a posterior’s probability mass that has support for values below or above zero (corresponding to probability of support for a
negative or positive influence of the predictor on the outcome, respectively).

3. Results
(a) Data summary
After data cleaning and filtering, our final female bat dataset contained 9694 cPCR test results from 1252 individuals of 96
different host species (electronic supplementary material, table S1, figures S1 and S5). These data represent 459 detections of 123
unique viral species across eight viral families: Adenoviridae, Astroviridae, Coronaviridae, Herpesviridae, Paramyxoviridae,
Parvoviridae, Polyomaviridae and Rhabdoviridae.

In the female bat viral detection dataset, there were 28 bat host species for which we tested samples from both non-reproduc-
tive (not pregnant or lactating) and pregnant individuals. In 23/28 (82.1%) of those species, observed viral detection probability
in samples from pregnant individuals was equal to or lower than in non-reproductive individuals (figure 1). There were 24
bat host species for which we tested samples from both non-reproductive and lactating individuals. In 21/24 (87.5%) of those
species, observed viral detection probability in samples from lactating individuals was equal to or lower than in non-reproduc-
tive individuals (figure 1).

(b) Bayesian statistical modelling
While the raw data summary suggests patterns of interest across reproductive categories, it does not account for important
confounders in the virus surveillance dataset. Explicitly controlling for these factors motivated our use of Bayesian models to
investigate reproductive effects on viral detection in female bats. For all fit Bayesian models, the R statistic for all parameters
approached 1.0 (i.e. were <1.01), and Markov chains mixed well (electronic supplementary material, figure S6). These diagnos-
tics indicate model convergence. Furthermore, we confirmed that the varying intercepts and slopes model fit to the full All Viral
Families dataset was able to make accurate in-sample predictions: observed test positivity in the full dataset and for each viral
family data subset fell within the 50% HPDI of model-based predictions (electronic supplementary material, figure S7).

In the varying intercepts and slopes model fit to the full All Viral Families dataset, the posterior mean for the community-level
intercept was negative (mean [95% HPDI]: −4.00 [−5.77, −2.26]), reflecting low viral detection overall (figure 2). The 95% HPDI
for the community-level pregnancy effect on viral detection spanned only negative values (−0.76 [−1.40, −0.02]; 97.4% posterior
support for negative values), indicating strong support for a reduction in viral detection in pregnant female bats compared with
non-gravid individuals (figure 2). The community-level lactation effect’s posterior mean was also negative (−0.68), and although
the 95% HPDI overlapped zero (−1.64, 0.19), 93.9% of the parameter posterior had support for negative values (figure 2). In sum,
these model estimates imply that modal viral detection probability in non-reproductive bats is approximately 1%, while viral
detection from pregnant and lactating individuals is roughly half that (approx. 0.4% detection probability; figure 3). Estimates
of species-specific reproductive effects closely conformed to the more general community-level estimates except in the case of
heavily sampled species such as Eidolon helvum and Pteropus giganteus (electronic supplementary material, figure S8).

Among the varying intercepts clusters in the varying intercepts and slopes model, the viral test protocol cluster had more
variation than any other (electronic supplementary material, figure S9). This reflects the fact that the probability of viral
detection varies strongly according to the viral family or genus being tested for and the protocol used (electronic supplementary
material, table S2). Year and country of sample collection had more limited influence on viral test outcome, while specimen
type and laboratory where analyses were conducted had the least effect of all (electronic supplementary material, figure S9).
However, due to non-independent sampling across the varying intercepts cluster variables—for instance, different countries

Table 1. Variables included as varying intercepts clusters in Bayesian models of viral detection in female bats. Variables are listed along with the justification for their
inclusion. Within each varying intercepts cluster, individual units were fit with a unique intercept. In general, this strategy can be used to model mechanistic drivers of
the outcome under investigation or as a way to control for ‘nuisance’ variables. The numbers of distinct units within each varying intercepts cluster in the full female
bat dataset are also shown. For technical details of the modelling approach, see the main text.

varying intercepts cluster modelling relevance number of units in cluster

year of sample collection controls for temporal variability in viral detection 9

country of sample collection controls for spatial variability in viral detection 14

specimen type controls for variability in viral detection attributable to biological specimen type 7

viral test protocol controls for variability in viral detection across viral families/genera, and controls
for variability in efficacy of viral detection protocols

13

diagnostic laboratory conducting testing controls for variability in viral detection efficacy among laboratories 15
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participating in different sampling years and samples from a country only being tested in specific laboratories—the individual
effects of the varying intercepts are not easily interpretable despite being appropriately controlled for.

In examining parameter estimates from varying intercepts and slopes models fit to single viral family data subsets, the
community-level intercepts for the Coronaviridae and Paramyxoviridae data subsets were similar to the estimate for the All
Viral Families dataset (figure 2). However, these estimates had inflated 95% HPDIs relative to the All Viral Families estimate, as
would be expected given smaller sample sizes in the data subsets. In the single viral family data subsets, the community-level
pregnancy effect posterior means were both negative (figure 2). Although both posteriors overlapped with zero in the 95%
HPDI, they both had >90% support for negative values (figure 2). Thus, there was support from both the Coronaviridae
and Paramyxoviridae data subsets for a negative effect of pregnancy on viral detection. Estimates of the community-level
lactation effect from the single viral family subsets were more heterogenous. In the Paramyxoviridae model, the 95% HPDI
for the lactation effect parameter substantially overlapped zero (figure 2). However, in the Coronaviridae data subset, the

Figure 1. Observed effect of pregnancy (a) and lactation (b) on viral detection probability across bat host species. For visualization, the viral detection dataset was
filtered to only include bat host species for which there were viral test data from both non-reproductive and reproductive conditions. All viral test data were pooled
within host species and reproductive conditions. Lines connect data from the same host species and are displayed with transparency to emphasize areas of overlap in
species trends.

Figure 2. Dotchart showing parameter estimates from varying intercepts and slopes Bayesian models of viral detection in female bats, including community-level
intercepts, pregnancy effects and lactation effects. Parameter means (dots) and 95% highest posterior density intervals are shown, and all parameter estimates are
presented on the log-odds scale. The community-level intercept, pregnancy effect and lactation effect parameters are shown for the full All Viral Families dataset as
well as the two data subsets composed of data from single viral families. Sample sizes (number of cPCR tests) are indicated in the figure legend. Detailed description of
the model structure, predictor variables and model fitting is given in the main text and electronic supplementary material, figure S2.
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community-level lactation effect posterior mean was negative (−1.03 [−2.00, −0.05], 98.4% posterior support for negative values).
Overall, our varying intercepts and slopes models implied lower viral detection in pregnant bats relative to non-reproductive
individuals while detection in lactating bats tended to be similar to or lower than non-reproductive bats, depending on the viral
dataset in question (figure 3).

Fitting alternative Bayesian models to the viral datasets recovered consistent negative effects of pregnancy on viral detection,
while the effects of lactation were more equivocal. When the All Viral Families dataset was fit using a varying intercepts
Bayesian model, the 95% HPDI for the pregnancy effect only spanned negative values (−1.02 [−1.41, −0.63]), but the 95% HPDI
for the lactation effect overlapped zero (−0.15 [−0.53, 0.23]; electronic supplementary material, figure S10). Use of the main
effects Bayesian model and the All Viral Families dataset gave a broadly similar picture: in this analysis, the 95% HPDI for the
pregnancy effect was strictly negative (−0.79 [−1.09, −0.50]), while the 95% HPDI for the lactation effect again overlapped zero
(0.01 [−0.25, 0.27]; electronic supplementary material, figure S11).

4. Discussion
Our results highlight the important association between reproductive status and viral shedding in female bats. We consistently
recovered a negative effect of pregnancy on viral detection in our global surveillance dataset after statistically accounting for
other sources of variation inherent in this sampling design, including geographic and temporal heterogeneity. Lactation had
a more uncertain influence on viral detection given that the strength of the lactation effect varied depending on the viral
dataset and model used for analysis. These findings have implications for our general understanding of viral dynamics during
reproduction in chiropteran and mammalian hosts and can help inform zoonotic pathogen surveillance efforts that seek to
sample wildlife during time periods of highest pathogen prevalence.

(a) Study limitations
To foreground further interpretation of our results, we note that individual reproductive bats were necessarily captured during
a broader reproductive season, when multiple aspects of bat ecology, such as movement and behaviour, may be altered in
comparison to the non-reproductive season. Unfortunately, it is extremely difficult to statistically address this confounding
given the need to define a reproductive season across the large suite of bat species included in our models [20,60], many of
which were captured from multiple sites and in multiple countries. Furthermore, bat reproductive phenology and even the
number of breeding seasons per year can vary across an individual bat species’s range [61,62]. Thus, we lack the ability to
cleanly separate individual reproductive status from reproductive season with our dataset. However, we highlight the fact that
pregnancy and lactation are not completely confounded by reproductive season in our analyses given that non-reproductive
females captured during the reproductive season are also included. Furthermore, our findings of reduced viral shedding
associated with pregnancy do not align with general expectations about how bat ecology in the reproductive season (i.e.
increased intraspecific contact) should impact viral dynamics (i.e. increased viral transmission and shedding) [20,21,60]. This
suggests our results are recovering a signal of individual reproductive state as opposed to population-level or other concomitant
ecological factors. Future work informed by multi-year, longitudinal studies across species should aim to dissect the unique
contributions of individual-level reproductive status, population-level reproductive seasonality and community-level interac-
tions to bat viral dynamics [63].

Figure 3. Model-based estimates of viral detection probability across reproductive conditions and viral datasets. Full parameter posterior distributions from varying
intercepts and slopes Bayesian models were used to generate estimates of detection probability for each reproductive condition-viral dataset combination. Points
represent distribution modes, thin vertical lines represent 80% highest posterior density intervals (HPDIs) and thick vertical lines represent 50% HPDIs. Thin black lines
chart the changes in modal viral detection probability across the non-reproductive, pregnant and lactating conditions within each viral dataset. We elect to display
modes rather than medians or means because for these highly right-skewed distributions, medians and means become unrepresentative of the location of the most
concentrated probability mass. Furthermore, we show 80% HPDIs rather than wider intervals to help visualize changes in the areas of most concentrated probability
mass (i.e. the 50% HPDIs).
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(b) Pregnancy and viral shedding
Pregnancy was the most important reproductive variable in our analyses, and model results across data subsets indicated that
viral shedding is reduced in pregnant female bats. This finding contrasts with some previous studies that proposed pregnancy
as a risk factor for viral infection in female bats [22,27–29,64]. However, these studies differ from ours in that they are of
single bat populations or species and/or single viruses. Furthermore, inference from these studies is sometimes complicated
by relatively small sample sizes and/or use of serology, which indicates prior, but not necessarily active, infection [27–29,64].
In contrast, our cPCR tests directly detect the presence of viral nucleic acid, indicative of infection and subsequent shedding.
Furthermore, there are numerous reports of ambiguous associations between pregnancy and bat viral infection that also conflict
with the prior studies that suggest a positive relationship between these two variables [23,24,30,65].

Parasite and pathogen dynamics during bat reproduction are often contextualized using the idea of life history trade-offs,
which posit that the costs of reproduction negatively impact other aspects of organismal performance, including host defense
[66,67]. Indeed, immune system depression is commonly invoked as an explanation when reproductive bats are found to
have increased parasite prevalence or load [22,26,27,68]. However, the costs of reproduction vary across taxa [69], such
that immunological trade-offs during reproduction in any given focal taxon may not generalize. For example, the greater
mouse-eared bat demonstrated depressed T cell response in early pregnancy [68], whereas the same immunological parameter
in Brazilian free-tailed bats was not affected by reproductive status [70]. Similarly, in Daubenton’s bat, pregnant females
had higher immunoglobulin G concentrations relative to non-reproductive individuals, while lactating females had higher
hemolysis titers, suggesting no obvious trade-off between reproduction and measures of immunity [71]. These disparities are
perhaps not surprising given that findings in mammalian reproductive immunology often depend upon the host species and
immunological components considered, as well as study methodologies [72–74]. In sum, the linkages between reproductive
status, immune system function and pathogen infection in bats are not currently well resolved. Our study, which leveraged a
global biosurveillance dataset to broadly address bat–virus interactions during reproduction, helps to clarify this subfield and
serves as a platform for additional research to more critically approach this topic.

In humans, pregnancy was historically thought to drive immunosuppression in the mother and, consequently, increased
susceptibility to infectious disease [75–77]. This paradigm has increasingly been challenged, however, and pregnancy may be
most accurately described as a period of immune system modulation, one that does not necessarily imply broad immunodefi-
ciency [75,78]. For example, Kraus et al. [76] reported decreased activity of some immune cells, such as natural killer and T
cells, during human pregnancy, but these shifts were accompanied by increased levels of defensin antimicrobial peptides and
blood phagocytes. These findings can be reconciled with the fact that some diseases are known to be more severe during
pregnancy [79,80] if pregnancy induces immune system reorganization that simultaneously strengthens barriers to initial
pathogen establishment while weakening immune control of existing infections [76,77,81]. Furthermore, we now know of
specific mechanisms, such as fetal-derived microRNAs, which can bolster maternal immune defenses during pregnancy [82].
This revised understanding of the immunology of pregnancy better matches evolutionary expectations, since there should be
strong selective pressure for effective pathogen defense during the reproductive period as it is central to organismal fitness
[75]. Collectively, these observations suggest that we should not assume that pregnancy strictly decreases immune defense
and increases infection risk. Our statistical results, showing decreased viral detection in pregnant female bats, call for further
integration of these perspectives into bat disease ecology in pursuit of a mechanistic understanding of wild bat immunology
across reproductive states.

(c) Lactation and viral shedding
In contrast to strong pregnancy effects, we found more inconsistent evidence for an influence of lactation on bat viral detection.
Although approximately 94% of posterior probability mass supported a negative value for the lactation effect when a varying
intercepts and slopes Bayesian model was used to fit the full All Viral Families dataset, the Paramyxoviridae data subset had
a lactation effect estimate very close to zero (figure 2). Furthermore, alternative Bayesian model formulations applied to the
All Viral Families dataset did not suggest any substantial lactation effect on viral detection. Lactation is costly and can demand
more energy than pregnancy [31]. Thus, one might hypothesize that physiological trade-offs may be more severe during
lactation than pregnancy, necessitating lower investment in immune defenses and viral control. Indeed, lactation status has been
linked to increased viral detection in some bat systems [23,30], but these results may be strongly confounded by reproductive
behaviour (i.e. lactating individuals in some species are often found in dense maternity roosts). On the other hand, although
lactation does incur an energetic cost for reproductively active females, it should also represent a shift back towards normal
physiological and immunological status following pregnancy. Dietrich et al. [22] reported decreased paramyxovirus prevalence
immediately following parturition in Mormopterus francoismoutoui, a finding they attribute to the reestablishment of typical
immune function in lactating females. Furthermore, variation in the timing of sample collection within the lactation period
(which differ in length across bat species) could have eroded any consistent signal of lactation on viral detection in our dataset.
Regardless of the precise mechanisms at play, we find limited evidence that lactation reliably alters viral detection across the
viral taxa considered, a result consistent with other recent work suggesting the likelihood of viral shedding during lactation is
indistinguishable from non-reproductive periods [20].
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(d) Bat reproduction, immunity and viral dynamics
Our findings point the way towards potentially fruitful avenues of investigation at the intersection of reproductive immunology
and bat biology. In reproductive immunology, studies of humans and mice have begun to parse the complex immunological
interactions between mother and fetus that contribute to a successful pregnancy, including fetal-derived antiviral factors that
may influence maternal cells [82,83]. While there are some similarities across taxa in immunological strategies during reproduc-
tion, the mechanisms that allow for maternal tolerance of the fetus while also providing for both maternal and fetal pathogen
defense throughout gestation are likely species-specific [83]. Concurrent with these developments in reproductive immunology,
a recent literature has begun to describe the unique immunological characteristics of bats, from their potential evolutionary
origins [84–86] to their genetic basis [87–90]. These investigations have highlighted the ways in which bat immune systems are
broadly distinct from other animals. However, our results, and the reproductive immunology work in other mammals cited
above, suggest that detailed study of bat immune responses in the context of reproduction is warranted.

Bats appear to have immune responses that enable a level of tolerance to viral infection that is unique among mammals [86].
Field sampling and experimental infection data suggest bat species can harbour far higher viral loads at the individual-level,
and far higher viral prevalence at the population-level, than other mammals. In the small number of bat species examined
thus far, specific immunological differences appear to account for these patterns. These include constitutive interferon (IFN)
activation and greater combinatorial diversity in immunoglobulin genes that do not undergo substantial affinity maturation
[88]. In other studies, bats were shown to have dampened STING and suppressed inflammasome pathways, both of which
contribute to immune tolerance and ultimately allow higher viral loads and prevalence [86]. We propose that it would be
evolutionarily advantageous for pregnancy in bats to either not lead to further reduced antiviral activity or actually increase
the immune response, so as to reduce viral load, shedding and risk of fetal infection, concomitant with the findings in our
study. This novel hypothesis would be valuable to test given its potential to help monitor, predict and manage viral spillover
from bats. Our findings also have relevance for understanding the role that vertical transmission plays in the maintenance of
important zoonotic viruses in bats (e.g. Ebola) [91]. Experimental researchers should investigate the immune system remodel-
ling that may occur near the fetal–maternal interface in bats, with special attention to the unique mechanisms that have been
previously implicated in bat immune defense [86–90]. Studies that track immune defenses and viral exposure within cohorts
of wild, reproductive female bats would also be especially valuable as a means to validate the statistical relationships and
mechanistic hypotheses put forward here [92,93].

5. Conclusions
Our results improve our understanding of viral dynamics in bat hosts and can be used to inform viral surveillance and
zoonotic disease prevention efforts. Specifically, our findings suggest that the intense focus on sampling maternity colonies
in bat infectious disease research may be less efficient during pregnancy periods than previously assumed (given reduced
viral detection during pregnancy) and could bias pathogen discovery. The description of new, potentially high-consequence
viruses in bats outside of maternity roosts [39] emphasizes that temporally, geographically and taxonomically broad sampling
schemes will be key to comprehensive viral discovery and monitoring in bats [34]. Study designs incorporating multiple species
and ecological contexts will also be necessary to completely characterize the viral diversity residing within mammalian host
species, of which our knowledge remains incomplete [42,94,95]. Furthermore, careful attention to viral dynamics throughout
the reproductive cycle in a wider variety of bat host species will help identify periods of increased zoonotic spillover risk to
humans, since spillover is often associated with pulses of viral excretion in reservoir hosts [6,12,24,25]. Our work is congruent
with recent, related studies that indicate the pup weaning period, not necessarily pregnancy or lactation periods, may be most
strongly associated with viral shedding in bats [20,60]. Consideration of the interplay between reproductive biology and host
defenses will deepen our understanding of virus–host dynamics and ultimately bolster our ability to prevent spillover from bats
and other important wildlife hosts of viral pathogens.
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