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Rift Valley fever (RVF) is a zoonotic disease that causes sporadic, multi-
country epidemics. However, there is limited understanding of RVF virus
circulation during interepidemic periods and the potential impacts of
global change on interepidemic RVF. To address these knowledge gaps,
we built a predictive model using recent interepidemic RVF outbreak
data from Kenya, Tanzania and Uganda. We then projected interepidemic
RVF risk for three future time periods (2021–2040, 2041–2060, 2061–2080)
under three global change scenarios representing different trajectories
for climate and human population distribution (SSP126, SSP245, SSP370).
Our model identified interepidemic RVF risk hotspots in east Kenya,
east Tanzania and southwest Uganda. Hydrology was a major driver of
disease risk: hotspots emerged in association with lakes and rivers, and
risk peaked during May–July following the long rains season (March–
May). Projections under global change scenarios suggested that disease
risk will generally decrease over time. Nevertheless, owing to expected
human population growth, we estimate that > 90 million people in the
study region will be exposed to interepidemic RVF by 2061–2080, which
is nearly double the historical (1970–2000) estimate of approximately
49 million people. Mitigating the future health impacts of RVF will
require increased disease surveillance, prevention and control effort in
risk hotspots.

1. Introduction
Rift Valley fever (RVF), a mosquito-borne zoonotic disease caused by RVF
virus (RVFV), affects Africa and the Arabian Peninsula [1]. RVF is a unique
threat because, in addition to causing human morbidity and mortality, disease
outbreaks can impact the livestock trade that supports hundreds of millions
of livelihoods throughout Africa [1,2]. To counteract RVF’s devastating health
and economic burden, models have been developed to predict when and
where major regional epidemics could emerge. RVF outbreaks often occur
following excessive rainfall [3,4] when flooding creates aquatic breeding
habitats that fuel the growth of RVFV-infected mosquito populations [1,5–7].
Disease forecasts have leveraged this information by using the normalized
difference vegetation index (NDVI), a satellite-derived measure of vegetation
growth in response to rainfall, to predict impending RVF epidemics [5,7,8].
This near-term forecasting approach enabled prediction of the multi-country

© 2026 The Author(s). Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.

Research

Cite this article: Eskew EA, Clancey E, Singh D,
Situma S, Nyakarahuka L, Njenga MK, Nuismer SL.
2026 Interepidemic Rift Valley fever in East Africa:
the recent risk landscape and projected impacts of
global change. Proc. R. Soc. B 293: 20252193.
https://doi.org/10.1098/rspb.2025.2193

Received: 26 August 2025
Accepted: 9 December 2025

Subject Category:
Ecology

Subject Areas:
health and disease and epidemiology, ecology

Keywords:
climate change, emerging infectious disease,
force of infection, machine learning, mosquito-
borne disease, population growth, serology,
shared socioeconomic pathways, vector-borne
disease, zoonosis

Author for correspondence:
Evan A. Eskew
e-mail: evane@uidaho.edu

Electronic supplementary material is available
online at https://doi.org/10.6084/
m9.figshare.c.8230314.

Downloaded from http://royalsocietypublishing.org/rspb/article-pdf/doi/10.1098/rspb.2025.2193/5676966/rspb.2025.2193.pdf
by guest
on 28 January 2026

http://orcid.org/
http://orcid.org/0000-0002-1153-5356
http://orcid.org/0000-0003-4728-4023
http://orcid.org/0000-0001-9817-0056
http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2025.2193&domain=pdf&date_stamp=2026-01-27
https://doi.org/10.1098/rspb.2025.2193
https://doi.org/10.6084/m9.figshare.c.8230314
https://doi.org/10.6084/m9.figshare.c.8230314


2006–2007 RVF epidemic weeks before it occurred, facilitating early warning of the at-risk human population [9].
Despite the promise of these predictive methods, the traditional research focus on large, but relatively infrequent, regional

RVF epidemics is challenged by increased recognition of RVF activity during interepidemic periods [10,11]. For example,
RVFV circulates endemically in humans across East Africa, including in Kenya [12–14], Tanzania [15–17] and Uganda [18–21].
Interepidemic RVF, while underappreciated relative to regional epidemics, is of significant public health concern given human
morbidities and deaths caused by RVFV infection during interepidemic periods [14,20,21]. Interepidemic RVF may also demand
a modified disease prediction paradigm: numerous factors besides rainfall, including elevation, topography, soils and various
aspects of human or livestock host populations, plausibly influence interepidemic RVFV dynamics at fine spatial scales [6,12,22–
24].

Our predictive understanding of RVF is further complicated by global change processes, particularly climate and human
population change, which promise to shift the risk landscape of numerous infectious diseases [25–27]. Climate change can have
multifaceted effects on the arthropod vectors of zoonotic diseases, including influences on pathogen transmission efficiency and
vector distribution [28]. As such, climate change is expected to alter RVF’s spatial extent and magnitude of impact [5,29–31].
Similarly, human population density and anthropogenic environmental pressures associated with urban areas can shape a
landscape’s suitability for vector-borne disease transmission [32]. Existing methods for RVF forecasting are primarily focused on
near-term prediction of regional epidemics (i.e. they focus on early warning, weeks or months ahead of large RVF outbreaks).
These approaches do not allow for RVF risk prediction over the longer timescales relevant to global change processes nor do
they address disease risk during interepidemic periods [2]. Consequently, we do not yet understand how global change is likely
to alter interepidemic RVF risk, and this knowledge gap hinders effective prioritization of research, policy and public health
practices (e.g. vaccine allocation) that could ensure healthier futures.

Here we use machine learning to analyse interepidemic RVF outbreak data (figure 1) and to project interepidemic RVF risk
under three future global change scenarios across Kenya, Tanzania and Uganda (hereafter, ‘the study region’). Our specific
objectives were to: (i) model recent interepidemic RVF outbreaks to learn relationships between environmental and biological
features and interepidemic RVF risk; (ii) validate the interepidemic RVF risk model using independent IgG serological data
from humans; (iii) project interepidemic RVF risk under global change scenarios using learnt relationships from the validated
model; and (iv) estimate the human population at risk from interepidemic RVF under global change scenarios. Ultimately, our
analyses identify key abiotic and biotic factors that are associated with interepidemic RVF outbreaks, estimate the recent risk
landscape for interepidemic RVF across East Africa and project how changing environmental conditions and human population
distribution in the coming decades will translate to changes in that risk landscape.

2. Methods
Our analysis workflow had four discrete steps. First, we used a machine learning model to identify the environmental and
biological features that predict recent interepidemic RVF outbreaks. Using the model, we were able to retrodict the relative
likelihood of interepidemic RVF across the study region for all months from 2008 to 2022. Second, we validated these retrodic-
tions using IgG serological data from humans—data that were never used in model training. Third, we used the validated
model to develop projections of interepidemic RVF risk across the study region for three future time periods (2021–2040,
2041–2060, 2061–2080) under three global change scenarios (SSP126, SSP245, SSP370; electronic supplementary material, ‘The
Shared Socioeconomic Pathways’). These global change scenarios represent potential future trajectories for climate and human
population distribution over the coming decades. Finally, we estimated the human population at risk from interepidemic RVF
under each future scenario. We describe each analytical step in greater detail below.

(a) Modelling recent interepidemic RVF outbreaks
To train a predictive model of interepidemic RVF, we used spatially and temporally explicit disease presence and absence data,
as well as associated predictor variables. Here we describe our procedures for defining RVF presence and absence locations,
collating predictor variables and training the machine learning model.

(i) Interepidemic RVF outbreak and background data

To model interepidemic RVF risk, we required disease presence and absence data (i.e. outbreak and background points) from
across the study region.

For disease presence data, we updated an existing dataset of livestock and human RVF outbreaks that occurred in 2008 or
later, following the large 2006–2007 East African RVF epidemic [31]. Given that all the outbreaks occurred after the 2006–2007
epidemic, we considered them as representative of interepidemic disease transmission. As such, our work investigates the
factors that drive RVF cases, but we do not address the large, multi-country epidemics that often dominate discussion in the
RVF literature. Interepidemic RVF outbreak events were primarily defined by viral detection via PCR or positive IgM antibody
tests, indicative of current or recent RVFV infection, respectively. We also drew on case reports from global health authorities
(e.g. the World Organisation for Animal Health).

To ensure our updated outbreak dataset provided comprehensive coverage of interepidemic RVF events during the focal
period, we performed a Web of Science search to capture additional relevant literature. We used the following search query
string: ‘(‘Kenya’ OR ‘Uganda’ OR ‘Tanzania’) AND (‘Rift Valley fever’ OR ‘RVF’) AND (‘interepidemic’ OR ‘inter-epidemic’ OR
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‘enzootic’ OR ‘IgM’ OR ‘PCR’ OR ‘qPCR’ OR ‘cross-sectional’ OR ‘laboratory-confirmed’)’. This search returned 181 papers. We
read the abstracts of all 181 papers to identify literature that probably matched our criteria (i.e. studies providing PCR or IgM
data for the study region during the focal interepidemic period). We conducted an in-depth review of the 28 papers that passed
this filtration step, attempting to extract data. We identified usable data in 22 of these 28 papers, and if not already represented
in our outbreak dataset, we incorporated this new information. Our updated outbreak dataset was composed of 122 small RVF
outbreaks (< 40 cases each) occurring in Kenya, Tanzania and Uganda from 2008 to 2022 [33] (figure 1).

Wherever possible, RVF outbreak locations were defined using GPS coordinates. However, for 25 of the 122 outbreaks, it was
either impossible to precisely define the outbreak location or the data collection context (e.g. health facility sampling) suggested
that the sampling location was not the true outbreak location. The location of these 25 outbreaks was defined as narrowly as
possible using administrative units. For downstream analyses, we then employed a data replication approach to adequately
represent uncertainty in outbreak location [34]. Specifically, we generated 10 duplicate sets of our RVF outbreak data. Outbreak
points known to the level of GPS coordinates were assigned their known coordinates in each data replicate. However, outbreak
points known only to the level of administrative unit were randomly assigned GPS coordinates within their administrative
unit in each data replicate. This data replication procedure generated a dataset of 1220 outbreak points, all with assigned GPS
coordinates, which we used for all further analyses.

For disease absence data, we generated a total of 27 000 background points from across the study region, 150 from each
month from 2008 to 2022 (electronic supplementary material, figure S1). Critically, to reduce the effects of disease reporting bias
in our model, we followed the approach of Gibb et al. [35] and generated background points in proportion to human population
density (electronic supplementary material, ‘Background Data’).

(ii) Predictor variables

To train our model, we used a suite of 31 spatially explicit predictors, including variables capturing physical landscape features
(e.g. hydrology, soil characteristics, topography), weather (e.g. precipitation, temperature), disease detection capacity (e.g.
travel time to healthcare) and the abundance of key RVFV hosts (e.g. human and livestock density) (electronic supplementary
material, table S1). These predictors have been implicated in driving RVF risk across spatial scales [4,6,22,24]. We processed
all predictor variable rasters to a spatial resolution of 2.5 arcminutes (4.63 km × 4.63 km grid cells at the equator). Given this
resolution, the study region was covered by a total of 124 313 grid cells. We operate with this grid cell layout throughout
our project workflow. More details on predictor variables can be found in the electronic supplementary material, ‘Predictor
Variables’ section.

Figure 1. Topographic map of Kenya, Tanzania and Uganda showing the locations (red points) of 122 interepidemic RVF outbreak events from 2008 to 2022.
Background colour represents elevation across the study region. Note that a subset of outbreak events (n = 25) for which precise locations were unknown are plotted at
their administrative unit centroids.
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(iii) Model training and evaluation

Once interepidemic RVF outbreak points, background points and predictor variables were collated, we fit gradient-boosted
decision trees using XGBoost [36]. Prior to model training, we split our collated dataset of outbreak and background points
into training and test datasets. Given our interest in developing a machine learning model that could make accurate predictions
of future RVF risk, we intentionally split the data such that the model was evaluated using a test dataset that was temporally
disjunct from any data used during model training. Training data consisted of all points from 2008 to 2018 (920 RVF outbreak
points [after data replication] and 19 800 background points; 1 : 22 class ratio), while the test dataset consisted of all points
from 2019 to 2022 (300 RVF outbreak points [after data replication] and 7200 background points; 1 : 24 class ratio). We tuned
model hyperparameters using cross-validation and evaluated model performance on the test dataset using the area under the
receiver operating characteristic curve (AUC-ROC) measure (electronic supplementary material, ‘Model Training’). Our data
were imbalanced, a common scenario in presence–background modelling [37], but AUC-ROC is robust to class imbalance [38].

Using the trained model, we generated historical predictions (retrodictions) of the relative likelihood of interepidemic RVF
across the study region for all months from 2008 to 2022. To be explicit about our terminology, we follow examples from the
species distribution modelling literature and call the predictive output from our model ‘relative likelihood’ values so that these
values are not interpreted as well-calibrated probabilities [37,39]. Furthermore, we take relative likelihood values as a proxy
for interepidemic RVF risk and therefore use these terms interchangeably throughout. While the model training process only
used predictor data from grid cells containing outbreak or background points, retrodictions used predictor data from across
the entire study region (i.e. we made retrodictions for every grid cell). Generating model-based retrodictions from 2008 to 2022
allowed us to investigate recent temporal and spatial patterns in the relative likelihood of interepidemic RVF. We performed all
model fitting and analysis in R version 4.4.1 [40] using the tidymodels package collection [41].

(b) Independent model validation
We validated our model’s predictive ability using IgG serological data, a fully independent data source, to generate estimates
of RVFV force of infection (FOI) into the human population. First, we compiled published and unpublished anti-RVFV IgG
serological data from humans across the study region [17,42], targeting individual-level data where serostatus, location and
age were known. In contrast to the PCR or IgM detections used to define our RVF outbreak dataset, IgG antibodies provide
long-lasting signals of prior RVFV exposure. Our data compilation efforts recovered a total of 6557 IgG serological assays
(i.e. ELISA tests) across Kenya (n = 5255), Tanzania (n = 542) and Uganda (n = 760), representing 216 seropositive individuals
(3.3% seroprevalence). Second, based on geographic location, we assigned each serological assay to its corresponding 2.5
arcminute grid cell. A total of 485 grid cells across the study region had associated IgG serological data. Third, to ensure
robust estimation of local FOI, we excluded all grid cells with fewer than 20 IgG assays from the analysis. Finally, we used
the age-structured serological data from the 115 remaining grid cells (n = 3391 IgG serological assays) to estimate local FOI
under the assumption that FOI was temporally constant within each grid cell [43]. Having obtained grid cell-level estimates
of RVFV FOI, we then calculated the mean grid cell-level relative likelihood of interepidemic RVF from 2008 to 2022 using
the model-based retrodictions previously described. We evaluated the significance of the relationship between estimated RVFV
FOI and model-predicted interepidemic RVF likelihood using a linear model with FOI as the outcome, RVF likelihood as the
predictor and the number of IgG serological assays conducted within each grid cell as a weight.

(c) Projecting interepidemic RVF risk under global change scenarios
To project future interepidemic RVF risk, we used the same set of 31 predictors previously described (electronic supplementary
material, table S1). However, instead of weather data, we used statistically downscaled, 2.5 arcminute climate projections for
three future time periods (2021–2040, 2041–2060, 2061–2080) under three climate scenarios (SSP126, SSP245, SSP370) (electronic
supplementary material, ‘Predictor Variables’) to drive the model. Similarly, we used projections of human population density
corresponding to the same time periods and underlying socioeconomic assumptions (i.e. SSP1, SSP2, SSP3) [44]. For each global
change scenario, we developed multi-model risk projections across the study region for each month of the calendar year using
the outputs of 11 different climate models from the Coupled Model Intercomparison Project (CMIP6; https://wcrp-cmip.org/
cmip-phases/cmip6/). To summarize, in making risk projections, all static predictors were held constant, human population
density varied according to the time period and SSP, and temperature and precipitation predictors varied according to the time
period, SSP, climate model and calendar month. For comparison, we also retrodicted interepidemic RVF risk using historical
climate (1970–2000) data and human population density data for the year 2000, which was the earliest year available.

(d) Estimating the human population at risk of interepidemic RVF under global change scenarios
Using our projected interepidemic RVF risk landscapes, we estimated the human population at risk of interepidemic RVF under
future global change scenarios. This involved combining our risk projections with spatially explicit estimates of future human
population density (electronic supplementary material, ‘Predictor Variables’) [44]. To define areas at risk of interepidemic
RVF under a given future scenario, we thresholded all 12 monthly risk layers using the value that maximized the true skill
statistic (TSS). These thresholded monthly risk layers delineated areas suitable for interepidemic RVF. We considered the
human population in a given grid cell at risk of interepidemic RVF only if the cell was suitable for interepidemic RVF for
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the majority of the calendar year (i.e. was suitable in > 6 months). Using this method, we estimated the human population at
risk of interepidemic RVF for all future scenarios described above. For comparison, we also estimated the human population
at risk assuming historical climate (1970–2000) and human population density from the year 2000. Finally, to help parse the
contributions of changing climate and changing human population to estimates of the future human population at risk of
interepidemic RVF, we conducted sensitivity analyses using two alternative estimation methods (electronic supplementary
material, table S2). First, we generated estimates of the human population at risk, assuming that climate changes according to
the global change scenarios (SSP126, SSP245, SSP370) but that human population remains fixed at historical (year 2000) levels.
Second, we generated estimates of the human population at risk assuming fixed historical (1970–2000) climate conditions but a
changing human population, according to the global change scenarios (SSP1, SSP2, SSP3).

3. Results
(a) Modelling recent interepidemic RVF outbreaks
Model training produced a machine learning model with a mean AUC-ROC score of 0.74 (s.e. = 0.06) across the 11 training
data folds. On withheld test data, the model had an AUC-ROC of 0.74 (electronic supplementary material, figure S2), indicating
a good ability to distinguish RVF outbreak locations from background points. When model predictions were thresholded to
maximize the TSS, the model had a TSS of 0.40, with a true negative rate (specificity) of 0.46 and a true positive rate (sensitivity)
of 0.94 (electronic supplementary material, figure S2).

Variable importance for the 31 predictor variables in the model ranged from 0 to 0.13 (electronic supplementary material,
figure S3). The 10 most important predictors included three precipitation variables, human population density, slope, soil clay
content, soil pH, soil silt, goat density and elevation. Partial dependence plots (PDPs) showed that the relative likelihood of
RVF generally decreases with human population density, slope and elevation but increases with soil pH, soil silt and goat
density (electronic supplementary material, figure S4). The relationship between RVF and soil clay content was more complex
and nonlinear (electronic supplementary material, figure S4). No temperature variable ranked higher than 12th in variable
importance (electronic supplementary material, figure S3), but PDPs suggested temperature dependencies for interepidemic
RVF. Monthly mean minimum temperatures of > 20°C tended to increase disease risk, while monthly mean maximum tempera-
tures > 30°C decreased risk (electronic supplementary material, figure S4).

Of special note, three precipitation variables appeared in the top 10 most important predictors: monthly precipitation
in the month of the event, monthly precipitation one month prior and monthly precipitation two months prior (electronic
supplementary material, figure S3). Interestingly, PDPs revealed that precipitation in the month of the event was negatively
related to interepidemic RVF risk but that the lagged precipitation variables were generally positively related to risk (electronic
supplementary material, figure S4). While it was less important for prediction, cumulative precipitation in the three months
prior to the event was also positively related to RVF (electronic supplementary material, figure S4).

(b) Independent model validation
Retrodictions of interepidemic RVF relative likelihood generated using our machine learning model were significantly
predictive of spatially explicit RVFV FOI estimates derived from human serosurvey data (β = 0.014, s.e. = 0.002, p < 0.001,
adjusted R2 = 0.21; electronic supplementary material, figure S5).

(c) The recent risk landscape for interepidemic RVF
Model-based retrodictions allowed us to examine temporal and spatial patterns in recent interepidemic RVF risk across
the study region. Despite year-to-year variation, retrodictions showed clear intra-annual seasonal patterns, with the relative
likelihood of RVF tending to peak during May–July at the end of the long rains season (March–May) (figure 2). Likelihood of
interepidemic RVF was predicted to be consistently low in August–November but was more variable in January and February
following the cessation of the short rains (October–December) (figure 2). Interepidemic RVF risk was concentrated in low-
and mid-elevation areas of Kenya (north and east) and Tanzania (northeast and southeast) (figure 2; electronic supplementary
material, figure S6). There were also notable hotspots of RVF risk in southwest Uganda and, to its the south, the adjacent
Kagera Region of Tanzania (electronic supplementary material, figure S6). Furthermore, some high-risk areas for RVF emerged
in association with hydrological features. For example, the Kyela District (Mbeya Region) of Tanzania north of Lake Malawi,
the Ntoroko District of Uganda bordering Lake Albert and portions of Uganda’s Northern Region along the Albert Nile river all
showed elevated disease risk (electronic supplementary material, figure S6). Lower risk of interepidemic RVF was predicted for
the high-elevation inland areas of central and west Kenya as well as substantial swaths of west Tanzania, centred on the Tabora
and Shinyanga Regions (electronic supplementary material, figure S6). During the short rains season (October–December), RVF
risk was noticeably reduced across much of Tanzania (figure 2). Conversely, during the short rains season and immediately
thereafter (January–March), the risk landscape in Uganda broadened beyond the country’s primary hotspot in the southwest to
include larger portions of the Central, Eastern and Northern Regions (figure 2).
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(d) Projecting interepidemic RVF risk under global change scenarios
Projections of interepidemic RVF risk under expected mid- and late-twenty-first century climate and human population
distribution also showed seasonality (figure 3a), but with some change relative to historical conditions (electronic supplemen-
tary material, figures S6 and S7). Most notably, there was decreased RVF risk across most of the calendar year, apart from March
to May. The risk decrease relative to historical conditions was particularly apparent in later time periods (i.e. 2061–2080) under
the high-radiative forcing, high-population SSP370 scenario (figure 3a). This trend was largely attributable to expected risk
decreases over time in portions of east Kenya, northeast Tanzania and southwest Uganda (electronic supplementary material,
figures S6–S16).

Although mean RVF risk generally decreases when comparing future scenarios with historical conditions (figure 3a), this
overall trend disguised opposing changes in different parts of the study region. For example, large decreases in expected risk
in the eastern extremes of Kenya were partially offset by increases in expected risk across a more interior strip running from

Figure 2. Temporal and spatial patterns in recent interepidemic RVF risk. Using the fit machine learning model, we retrodicted interepidemic RVF risk for every month
from 2008 to 2022. We summarized model predictions into either the mean relative likelihood of interepidemic RVF across the study region (a) or the proportion of
the study region suitable for RVF when model predictions were thresholded to maximize the true skill statistic (b). The colour bar for (a) and (b) indicates year, with
orange representing earlier years and blue representing more recent years. Blue-shaded regions in (a) and (b) represent the long rains (March–May) and short rains
(October–December) seasons. We also grouped retrodictions by months and averaged across all years from 2008 to 2022 to produce seasonal risk maps (c). In these
maps, we plotted predictions on a log10 scale to better emphasize areas of intermediate risk. For the colour bar in (c), dark green corresponds to low relative likelihood
of interepidemic RVF, while dark red corresponds to high likelihood. The colour bar was constructed such that yellow corresponds to the model’s threshold value. In
other words, yellow areas represent regions that are on the threshold of suitability for interepidemic RVF.
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Marsabit County in the north through Tana River County in the south (electronic supplementary material, figures S6–S16).
In Tanzania, portions of the southerly Morogoro, Lindi and Ruvuma Regions may increase in risk even as large portions
of the country’s northeast and northwest become less risky over time (electronic supplementary material, figures S6–S16).
Across Uganda, the future risk landscape for interepidemic RVF is mostly expected to decrease relative to historical conditions,
especially in the country’s southwest near the border with Tanzania (electronic supplementary material, figures S6–S16).
However, in some calendar months, risk is projected to increase in the areas along Lake Albert and the Albert Nile river in
western Uganda (electronic supplementary material, figures S8–S16).

(e) Estimating the human population at risk of interepidemic RVF under global change scenarios
We estimated that under historical climate and human population distribution, approximately 49 million people throughout
the study region lived in areas with high interepidemic RVF risk for most of the calendar year (electronic supplementary
material, table S2). Despite projected decreases in mean RVF risk across the study region under all global change scenarios
(figure 3a), concomitant increases in the expected human population translate to increasingly large numbers of people exposed
to interepidemic RVF under future conditions (figure 3b). By 2061–2080, we estimate that approximately 92–157 million people
throughout the study region will be living in areas with high interepidemic RVF risk for most of the year (figure 3b; electronic
supplementary material, table S2). However, population exposure to RVF was highest under the SSP370 scenario: all estimates
for 2061–2080 and this global change scenario indicated > 127 million people at risk, which is more than double the historical
estimate.

Sensitivity analyses clarified the dominant role that projected human population growth plays in driving elevated estimates
of the future human population at risk from RVF. If we use future climate scenarios but fix human population at historical (year
2000) levels, estimates of the human population at risk from interepidemic RVF throughout the twenty-first century are lower
than the historical estimate of 49 million and decrease over time (electronic supplementary material, table S2 and figure S17).
Conversely, if we assume a fixed, historical climate (1970–2000) but allow future human population to change according to the
SSP scenarios, estimates of the future human population at risk are higher than the analogous estimates that assume concurrent
change to both climate and human population (electronic supplementary material, table S2 and figure S17).

Figure 3. Projected future interepidemic RVF risk and corresponding human population at risk. Using the fit machine learning model, we predicted RVF risk under
both historical (1970–2000) and future conditions (a). The mean monthly predictions for the single historical climate scenario are shown as a dashed black line in each
panel facet to provide a consistent basis for comparison. Projections under future conditions were generated for 3 time periods (panel columns), 3 paired climate and
human population scenarios (line colour) and 11 climate models. The solid lines within each panel facet correspond to the multi-model mean across the 11 climate
models, while the grey-shaded regions indicate the range of risk projections across climate models. These multi-model risk projections were combined with projections
of human population density to estimate the human population exposed to interepidemic RVF for the majority of the calendar year under each future scenario (b).
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4. Discussion
We developed and validated a machine learning model of interepidemic RVF that predicted seasonal and spatial variation in
disease risk across Kenya, Tanzania and Uganda. When used to project future RVF risk, the model suggested that risk will
largely decrease relative to historical conditions. Despite an expected mean decrease in disease risk across the study region,
we recover a shifting risk landscape, with certain areas becoming more suitable for interepidemic RVF as others become less
suitable. Furthermore, given expected human population growth, we predict that > 90 million people in the study region will be
exposed to interepidemic RVF for the majority of each calendar year by 2061–2080. Our results underscore the threat that RVF
could pose to public health across East Africa in the coming decades and simultaneously improve our ability to monitor and
mitigate disease risk.

(a) Interepidemic RVF model performance and validation
Before discussing our results in more detail, we note that our machine learning model of interepidemic RVF had very high
sensitivity (0.94) but relatively low specificity (0.46) when applied to the test dataset of outbreak and background points from
2019 to 2022. The model’s high sensitivity indicates that most known outbreak points are accurately classified, suggesting
that true high-risk locations and time periods are likely to appear as high-risk in our analyses. This is a desirable property
allowing the prioritization of future RVF surveillance and mitigation activities. Simultaneously, we caution that the model’s low
specificity indicates that some signals of elevated risk in our analyses may be false positives.

In support of our model’s robustness, predictions of RVF relative likelihood were positively correlated with completely
independent estimates of RVFV FOI into humans. This suggests that our model, which was trained solely on RVF outbreak
location data (including cases in both livestock and humans), captures important processes driving human exposure to RVFV.
One caveat is that our method for estimating FOI, which relies on age-structured IgG serological data, assumes that FOI has
been constant for as long as the oldest individual in the dataset has been alive (approximately 90 years) [43]. Because RVFV
FOI changes substantially during the transition between epidemic and interepidemic regimes and is likely to vary over time
even within interepidemic periods, this assumption cannot hold in a literal sense. Despite this limitation, the fact that we
recovered a significant positive relationship between model predictions and estimated FOI suggests that similar processes
shape the long-term average risk of RVFV exposure across both interepidemic and epidemic periods. More robust validation
of our machine learning predictions, which are made at the monthly timescale, would require reconstructing historical FOI by
coupling serological data to more complex mathematical models that allow FOI to vary over time.

(b) Drivers of interepidemic RVF risk
Our model indicated that precipitation, human population density, soil characteristics, slope, elevation and goat density were
the most important predictors of interepidemic RVF. With respect to precipitation, we found that interepidemic RVF outbreaks
were more likely to occur in relatively dry months that were preceded by wet months (i.e. months near the end of rainy
seasons). As such, there was distinct seasonality in predicted interepidemic RVF risk, with elevated risk May–July following the
long rains season (March–May) and a secondary peak January–February following the short rains season (October–December).
These findings agree with prior work on the timing of RVF outbreaks [23] and are unsurprising given the key role that
precipitation plays in the growth of RVFV vector populations [3,4,22,24]. Previous studies also found, as we did, that certain soil
types and lower elevations are associated with RVF [22,24,45]. These environments likely represent optimal habitat for RVFV
vectors and cryptic RVFV circulation. Interestingly, goat density was the most important livestock predictor of interepidemic
RVF, with higher goat densities driving increased disease risk. This relationship deserves further investigation, but our work
adds to existing evidence that goats may be important sentinels of RVF risk in humans [46,47].

Notably, RVF outbreak risk was negatively related to human population density in our model. We emphasize that the
background points used in model training were themselves drawn in proportion to human population density. Discovery
and reporting biases are pervasive throughout disease ecology [48–50], and reporting can be a major factor shaping the
observed distribution of disease events [51], including in the RVF system [23,52]. This motivated our approach to background
point selection, which was meant to minimize the influence of disease reporting bias [35], under the assumption that disease
surveillance and reporting effort scale with human population density. From a biological perspective, it is feasible that RVF
risk is reduced in areas with dense human settlements. There is little evidence for human-to-human transmission of RVFV, and
human cases are most likely to be acquired through contact with mosquito vectors or exposure to infected animals [1,53]. As
such, it may be that there is lower risk of RVFV maintenance and transmission in dense urban centres compared with rural
areas with limited vector control, higher livestock densities and greater human–livestock interaction. Indeed, the predictor data
used here indicate that areas of dense human population (i.e. > 5000 people per km2) tend to have limited livestock densities,
which presumably reduces the opportunity for RVFV exposure.

(c) Spatial variation in interepidemic RVF risk
Our model predicted substantial spatial variation in interepidemic RVF risk across the study region, and this heterogeneous
risk landscape is largely expected to persist with global change. Large portions of low-elevation east Kenya were predicted to
be at high risk of interepidemic RVF, including the counties of Marsabit, Isiolo, Tana River, Taita-Taveta, Lamu, Garissa, Wajir
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and Mandera. These findings are congruent with prior work demonstrating elevated RVF risk in many of these same areas
[13,14,22,24]. Crucially, because of our background data selection methods, our model could identify these sparsely populated
areas as high-risk despite limited disease reporting in some counties. Similarly, our dataset contained no interepidemic RVF
outbreak events from Turkana County in northwest Kenya, yet our model predicted high suitability for interepidemic RVF
in this known high-risk region [12,14]. In Tanzania, interepidemic RVF risk was concentrated in (i) portions of the northeast,
namely, the Mara, Simiyu, Arusha and Manyara Regions, (ii) low-elevation coastal and inland areas of the southeast, namely the
Morogoro, Pwani and Lindi Regions, and (iii) the western Kagera Region bordering Uganda. We also recovered a notable RVF
hotspot immediately north of Lake Malawi in the Kyela District (Mbeya Region), mirroring prior work [15]. Human RVFV IgG
seroprevalence can approach 30% in the low-lying areas adjacent to Lake Malawi [15], and this part of Tanzania deserves special
attention as a site of endemic RVFV circulation [45,54]. Finally, in Uganda, our model suggested high risk in the country’s
southwest, an area that is probably an epicentre for RVFV transmission [18,19,55,56], as well as in the west near Lake Albert and
the Albert Nile river. Collectively, our results highlight regions to prioritize for RVF surveillance and mitigation, both now and
in the future.

(d) Interepidemic RVF risk under global change scenarios
Projections of interepidemic RVF showed broad risk decreases in response to anticipated changes in climate and human
population. This risk decrease scaled with global change scenario, being most pronounced in the high-radiative forcing,
high-population SSP370 scenario towards the end of the twenty-first century. Spatially, this trend manifested most clearly in
the Kenyan counties of Mandera, Wajir and Garissa, suggesting that future climatic changes and shifting human populations
will create less favourable conditions for RVF in these arid, low-elevation environments. We emphasize that even with expected
risk decreases owing to global change, these areas will remain high-risk relative to much of the study region. In Tanzania, a
primary finding from our global change modelling was that a decrease in RVF risk in the northeast may be accompanied by
an increase in RVF risk in the south. Specifically, an area centred on the southern Morogoro Region is projected to experience
RVF risk increases during March–May (electronic supplementary material, figures S8–S16). The Morogoro Region, which we
predict is already at high risk of interepidemic RVF, deserves increased public health attention. Finally, in Uganda, the main
projected change in future interepidemic RVF risk was a risk reduction in the southwest. Interestingly, projected risk reductions
in this area are a continuation of changes to the risk landscape that are already underway: our retrodictions for 2008–2022
show slightly decreased risk in southwest Uganda when compared with predictions made under historical 1970–2000 climate
(electronic supplementary material, figure S6). We stress that southwest Uganda remains a relatively high-risk area within
the broader study region, even accounting for projected risk decreases. However, our modelling also suggests that the areas
surrounding Lake Albert may emerge as an important site for RVFV transmission in Uganda in the future.

Our interepidemic RVF risk projections assumed changing precipitation, temperature and human population density, and,
of these three, precipitation is arguably the factor that is both most important to RVF epidemiology and most uncertain.
Temperature showed a relatively straightforward relationship with RVF in that low minimum temperatures and high maximum
temperatures both reduced predicted disease risk. Because the SSP scenarios uniformly imply warming across the study region
(albeit to varying degrees in different scenarios) [57], temperature changes influence future interepidemic RVF risk to the
extent that areas warm into or out of the disease’s optimal thermal range. Similarly, human population density had a simple
estimated relationship with interepidemic RVF in that greater densities reduced disease risk. Because all SSP scenarios assume
a growing human population in the study region throughout the twenty-first century [44], future population trends broadly
serve to decrease RVF risk. By contrast, precipitation had a more complex relationship with interepidemic RVF: disease risk
increased in relatively dry months that were preceded by wet months (electronic supplementary material, figure S4). As such,
our projections of interepidemic RVF risk are affected by both the magnitude and timing of expected precipitation.

Given that our disease projections are sensitive to precipitation inputs, we stress the need for more trustworthy precipitation
projections, a predictive task that is currently subject to numerous uncertainties [57,58]. Importantly, while our study region
of central East Africa is projected to undergo a moderate wetting trend throughout the twenty-first century, other parts of
Africa could receive even larger proportional increases in precipitation (e.g. north East Africa, central Africa) or, alternatively,
could experience drying (e.g. south Africa) [57]. Thus, the impacts of climate change on interepidemic RVF in these regions
may differ from what we project in central East Africa. Beyond simple wetting or drying trends, accurate projections across
Africa of change in precipitation frequency, duration and intensity, including extreme events that lead to flooding, will be key
to skillful projections of future RVF risk. For example, in East Africa, increased precipitation in historically dry months (e.g.
July–September) [58] could generate RVF disease dynamics that depart from established seasonal regimes.

(e) Human population at risk of interepidemic RVF under global change scenarios
Because all SSP scenarios assume human population growth in the study region, we estimate that increasing numbers of
people will be exposed to interepidemic RVF throughout the twenty-first century, even despite projected decreases in average
disease risk across the landscape (electronic supplementary material, table S2). Our sensitivity analyses demonstrated that
changing climate and changing human population distribution have counteracting influences on the future human population
at risk from RVF. For example, relative to our primary estimates of the human population at risk, which were generated
using both future climate and future human population projections, alternative estimates generated assuming static, historical
climate conditions and future human population change show even larger numbers of people at risk (electronic supplementary
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material, figure S17). In other words, future climate regimes are expected to decrease landscape-scale suitability for RVF, partly
mitigating the health burden that would be expected owing to a growing human population alone.

(f) Epidemic or hyperendemic RVFV dynamics in East Africa?
In this work, we adopted the classical view of RVF epidemiology based on epidemic disease dynamics. Under this model,
sporadic RVF epidemics, which are typified by explosive case counts (in both livestock and humans) and disease spread over
large areas, are interspersed with interepidemic periods characterized by more limited disease transmission [10,12,59]. Given
that the major 2006–2007 RVF outbreak in East Africa is widely recognized as an epidemic event [60–62], we collated East
African RVF outbreak data after 2007 as representative of interepidemic cases, ultimately generating a dataset that spanned
2008–2022.

We acknowledge that the interepidemic status of the year 2018 may be questionable: relatively large numbers of RVF cases
were observed that year, including the largest annual RVF case counts in humans across our 2008–2022 dataset for Kenya [63],
Tanzania [64–66] and Uganda [21]. However, the fact that RVF surveillance effort has varied substantially over time greatly
complicates interpretation of RVFV dynamics. For example, elevated RVF case counts in Uganda in 2018 may be at least
partially attributable to increased surveillance capacity (given the creation of the country’s viral haemorrhagic fever surveillance
programme in 2010 [21,67]) coupled with heightened interest in RVF surveillance (owing to the first detection of RVF cases
in Uganda in 2016 after a multi-decade absence [18,19]). Furthermore, many acute human RVF cases in Tanzania in 2018
were documented via cross-sectional sampling for viral haemorrhagic fevers that happened to occur from June to November
2018 [64,65], leaving open the possibility that a similar sampling scheme deployed in other years might have captured similar
numbers of RVF cases. For these reasons, we ultimately chose to consider all outbreak data from 2008 to 2022 as deriving from
interepidemic rather than epidemic transmission.

Nonetheless, the observed variation in outbreak number and case counts across years highlights the complexity of RVFV
dynamics. In fact, Rostal et al. [59] recently proposed that RVF epidemiology may break from the traditional epidemic model in
some parts of Africa. Rather than classical epidemic–interepidemic cycles, there may instead be a hyperendemic RVFV dynamic
characterized by sustained RVFV transmission and relatively high disease incidence or prevalence. Indeed, portions of our East
African study region might maintain RVFV in a hyperendemic pattern [56], and we echo calls for further work that could help
clarify whether some RVF disease events currently considered interepidemic cases by the RVF research community are better
described as arising from hyperendemic transmission [59].

5. Conclusions
In sum, our interepidemic RVF model showed seasonally varying disease risk, with the highest RVF risk during May–July.
Disease risk is generally projected to decrease under future global change scenarios. Despite expected risk decreases, when
coupled with projections of human population growth, these predictions suggest that > 90 million people in the study region
may be exposed to interepidemic RVF by 2061–2080. Consequently, we urge increased disease surveillance, prevention and
control efforts in the geographic areas we identify as high-risk. In addition, focused studies are needed to help differentiate
East African regions experiencing epidemic versus hyperendemic RVFV dynamics [59], and further work at the animal–human
interface would clarify the specific conditions that lead to human RVFV exposure. Finally, targeted public health interventions,
such as vaccination campaigns informed by predictive models, could help mitigate the animal and human health impacts of
RVF in a changing world [68].
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