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Abstract

Reducing spillover of zoonotic pathogens is an appealing approach to preventing human

disease and minimizing the risk of future epidemics and pandemics. Although the immediate

human health benefit of reducing spillover is clear, over time, spillover reduction could lead

to counterintuitive negative consequences for human health. Here, we use mathematical

models and computer simulations to explore the conditions under which unanticipated con-

sequences of spillover reduction can occur in systems where the severity of disease

increases with age at infection. Our results demonstrate that, because the average age at

infection increases as spillover is reduced, programs that reduce spillover can actually

increase population-level disease burden if the clinical severity of infection increases suffi-

ciently rapidly with age. If, however, immunity wanes over time and reinfection is possible,

our results reveal that negative health impacts of spillover reduction become substantially

less likely. When our model is parameterized using published data on Lassa virus in West

Africa, it predicts that negative health outcomes are possible, but likely to be restricted to a

small subset of populations where spillover is unusually intense. Together, our results sug-

gest that adverse consequences of spillover reduction programs are unlikely but that the

public health gains observed immediately after spillover reduction may fade over time as the

age structure of immunity gradually re-equilibrates to a reduced force of infection.

Author summary

Many pathogens, such as rabies, coronaviruses, and hantaviruses primarily circulate

within wild animals but can infect humans when the opportunity arises. This pervasive

challenge to public health has motivated the development of new methods designed to

reduce the frequency of these spillover events. Although reducing spillover infection of

humans appears to be an obvious win for public health, it is conceivable that altering his-

torical patterns of spillover could change the age structure of human immunity in a way

that undermines human health. Using mathematical and computational models we
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evaluate the conditions required for these counterintuitive impacts to occur. Our analyses

demonstrate that reducing spillover from wild animals will generally improve public

health and that negative outcomes can occur in only rare and unusual circumstances.

Although negative impacts of spillover reduction are likely to be rare, our results show

that the public health benefits of spillover reduction may fade over time unless a near total

elimination of spillover can be achieved.

Introduction

Zoonotic diseases, those that transmit from animals to people, are a pervasive threat to public

health. Nearly two-thirds of emerging infectious diseases have a zoonotic origin [1], and

chronic spillover of zoonotic pathogens sickens hundreds of thousands of people each year.

Just within the past decade, spillovers of Ebola virus [2], Lassa virus [3], Nipah virus [4], and,

most notably, SARS-CoV-2 [5–7] have collectively infected and killed millions and driven

massive societal disruption [8, 9]. Clearly, mitigating the risk posed by spillover of zoonotic

diseases is a pressing public health challenge.

Historically, our response to zoonotic disease has primarily focused on identifying and con-

taining human infections and outbreaks before they spiral out of control [10, 11]. The mixed

track record of this approach has led to increasing interest in preemptive strategies that seek to

minimize the risk of spillover itself. For example, human behavior-change initiatives [12, 13]

and ecological or technological countermeasures to disease [14–17] aim to reduce the force of

spillover into the human population. As long as reducing the force of spillover reliably reduces

the burden of zoonotic disease, these efforts represent a clear win for public health.

A critical assumption that underpins these preemptive approaches, however, is that the

force of spillover and disease severity are independent. One scenario in which spillover pres-

sure and disease severity become intertwined arises when the severity of pathogen infection

increases with age [18]. In such cases, once established as endemic, the cumulative health bur-

den of zoonotic disease may be lower in areas where spillover pressure is high. This counterin-

tuitive result arises if high spillover pressure causes most humans to be infected at a young age

when the health impacts of infection are less severe. If these individuals are exposed again later

in life, they are then protected by immunity acquired in childhood. In contrast, in areas with

low spillover pressure, infection may not occur until later in life when its consequences are

more severe. The relationship between age of first infection and disease severity forms the

basis for existing theory linking changes in vaccination rates or disease transmission to shifts

in the public health burden of established human diseases [19–23]. These ideas have not yet,

however, been formally integrated into our theoretical understanding of the link between spill-

over pressure of zoonotic pathogens and human disease. Thus, we lack a quantitative frame-

work for predicting how changes to reservoir populations that influence spillover pressure

(e.g., habitat destruction, habitat reconstruction, displacement, culling, vaccination) will influ-

ence the total public health burden of zoonotic disease.

Here, we seek to clarify if spillover reduction, whether intentional or unintentional, could

increase the overall public health burden of zoonotic disease. To this end, we develop mathe-

matical models of age-structured populations subject to a constant force of spillover. Our

models apply to those zoonotic diseases caused primarily by repeated, direct spillover from an

animal reservoir rather than an initial spillover followed by sustained human-to-human trans-

mission. Using mathematical analyses and computer simulations, we study how the public

health burden of disease will change in response to shifts in the force of spillover. These
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analyses identify the conditions where counterintuitive impacts of spillover reduction arise

and quantify their magnitude. Parameterizing our models using empirical data on Lassa virus

allows us to evaluate the scope for spillover reduction to cause unanticipated and undesirable

consequences in a system with significant impacts on human health.

Methods

Continuous-time model

We study an age-structured human population that experiences a constant force of infection,

λ, caused by spillover from an animal reservoir. We assume human infection results directly

from spillover and that human-to-human transmission following spillover is sufficiently rare

to be ignored. This assumption is reasonable for zoonotic pathogens such as Lassa virus, Bru-
cella, and Borellia where most human infection is the result of direct spillover from an animal

reservoir [3, 14]. Humans are born into the susceptible class, S, at rate b and die at a per capita

rate δ. Individuals who become infected through spillover move into an infected class, I, from

which they may recover at rate γ or advance to a state of clinical disease, M, at rate μ. Individu-

als experiencing clinical disease, M, may recover at rate γ or succumb to the disease at a per

capita rate v. Individuals that recover from infection move to the R class which is assumed to

be immune to further infection. However, immune individuals in the R class may lose immu-

nity over time and return to the susceptible S class at rate ω. Assuming the human population

is sufficiently large for stochastic effects to be ignored leads to the following system of partial

differential equations describing the distribution of humans of age a in each class as a function

of time, t:

@S
@t
¼ �

@S
@a
� lSþ oR � dS ð1aÞ

@I
@t
¼ �

@I
@a
þ lS � gI � dI � mI ð1bÞ

@M
@t
¼ �

@M
@a
þ mI � gM � dM � vM ð1cÞ

@R
@t
¼ �

@R
@a
þ gðI þMÞ � oR � dR ð1dÞ

with boundary conditions:

Sð0; tÞ ¼ b ð2aÞ

Ið0; tÞ ¼ 0 ð2bÞ

Mð0; tÞ ¼ 0 ð2cÞ

Rð0; tÞ ¼ 0 ð2dÞ

In the equations above, the functional dependence of the variables on age, a, and time, t, has

been suppressed for clarity.

Because our focus is on understanding how changes to the force of spillover influence

human health at the population level, we focus on quantifying the “burden” of zoonotic disease

which we define as the number of new clinical cases that occur each year, per capita.
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Mathematically, the clinical burden of zoonotic disease at time, t, is then given by:

B ¼
1

N

Z 1

0

mðaÞI da ð3Þ

For generality, we also quantify the public health impacts of spillover reduction by studying

changes in average human lifespan.

Stochastic simulations

Because the continuous-time model developed in the previous section is largely intractable for

many biologically interesting cases, we complemented it with a simulation-based approach. In

addition to expanding the scope of scenarios we can investigate, these simulations allow us to

probe the temporal dynamics of the system during transitions from a state of high spillover

pressure to one where spillover pressure has been reduced. Specifically, we use the Gillespie

algorithm to simulate stochastic analogues of equations (1–2) with discrete age classes. We use

this stochastic approach to better quantify uncertainty in outcomes, particularly changes in the

burden of clinical disease which emerge from spillover—a potentially rare event associated

with significant randomness. To increase computational efficiency, we implement a version of

the τ-leaping algorithm [24] with a time-step equal to 1 day. Transitions between age classes

are discrete and deterministic and occur once each year when all individuals are advanced into

the next age class. To speed computation and enhance biological realism, we impose a maxi-

mum lifespan of 150 years on these stochastic simulations such that individuals older than 150

years inevitably die and are removed from the system. Stochastic simulations were imple-

mented in C++.

Application: Lassa virus in West Africa

To better understand the relevance of our results for a system of significant importance to

human health, we parameterized our model for Lassa virus within West Africa. Lassa virus

(Lassa mammarenavirus; family Arenaviridae) is a single-stranded bisegmented RNA virus

that is endemic throughout much of West Africa where it imposes a substantial burden on

human health due to regular spillover from its primary rodent reservoir, Mastomys natalensis
[3, 25]. Spillover occurs primarily through human contact with urine or feces of infected

rodents although isolated human-to-human transmission is also possible, primarily in nosoco-

mial settings [25]. For this reason, spillover reduction has been explored as a means to reduce

the health burden of this widespread disease [26, 27]. Accumulating evidence also suggests

that an invasion by the black rat, Rattus rattus, may be displacing Mastomys natalensis—and

reducing the force of spillover—as it moves inland from the coast [28–31]. Thus, understand-

ing the consequences of spillover reduction in this system is relevant to predicting the conse-

quences of intentional human intervention as well as incidental anthropogenic impacts.

Estimates for most model parameters were gleaned directly from the literature, with values

and sources described in the S1 Text. In brief, disease-independent mortality, δ, was estimated

as the reciprocal of the average lifespan of humans from Ghana, Guinea, Sierra Leone, Liberia,

and Mali. The rate of recovery from infection, γ, was based on an average duration of infection

equal to 30 days which we selected based on the frequently reported 7–21 day pre-symptomatic

period of infection [32] and 18 day average symptomatic period of infection [33]. Our estimate

for the rate of progression to clinical disease, μ, was derived from values in the literature

reporting that 20% of infections result in development of symptoms [32]. Similarly, our esti-

mate for the rate of progression to death once symptoms develop, v, was derived from values

in the literature reporting that 30% of symptomatic cases admitted to the hospital result in
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mortality [32]. We set the rate at which immunity wanes, ω, to the rate of seroreversion

reported by McCormick et al. 1987 [34]. Because considerable uncertainty and debate sur-

rounds the duration of immunity, however, we also consider an alternative scenario where

immunity is permanent. As we will see, negative impacts of spillover reduction are more likely

with permanent immunity, making this a useful (conservative) benchmark for evaluating

potential risks of planned interventions.

To understand the relationship between age and disease severity within the Lassa virus sys-

tem, we analyzed survival data for individuals in different age classes admitted to the hospital

with clinically-verified Lassa virus infections [35]. Specifically, we calculated the proportion,

Pi, of individuals within each age class, i, that succumbed to Lassa virus infection. These pro-

portions were than transformed to age-class specific rates of advancing to severe disease, μi, by

recognizing that:

mi ¼
Piðgþ dÞ

1 � Pi
ð4Þ

Least squares regression was then used to estimate a linear function predicting the rate of

advancing to clinical disease as a continuous function of age, μ(a).

Finally, we estimated the force of spillover into the human population, λ, for sites within

West Africa where the seroprevalence of Lassa virus antibodies has been systematically esti-

mated within the human population. Assuming the population is at a steady state, the force of

spillover can be estimated using the following equation:

l̂ ¼ �
Rðdþ oÞðgþ dþ mÞðgþ dþ vÞ

ðgþ dþ mþ vÞðgðR � 1Þ þRðdþ oÞÞ
ð5Þ

where R is the estimated seroprevalence of Lassa virus antibodies (S1 Text).

Results

Decreasing the force of spillover increases the average age of infection

Decreasing the force of spillover reduces the number of people being infected per unit time

and should thus lead to an intuitive decrease in disease within the human population. In addi-

tion to decreasing incidence, however, reducing the force of spillover increases the average age

at which individuals become infected. Although this relationship is well-understood within

classical epidemiology [36], its consequences for spillover reduction programs have not been

fully explored. Thus, to set the stage for results we will develop in the next section, we calculate

the average age at infection for our model and describe how it changes with the force of infec-

tion and duration of immunity.

Because we assume the force of spillover is independent of age, the average age at infection

is equal to the average age of individuals in the susceptible class, S:

�A ¼

Z 1

0

a
SðaÞ
Ŝ

da ð6Þ

where S(a) is the number of susceptible individuals of age a at steady state, and Ŝ is the equilib-

rium abundance of susceptible individuals (S1 Text). Assuming disease-dependent mortality,

v, is negligible, Eq (6) can be solved to yield the following expression for the average age of

infection:

�A ¼
d

2
ðgþ dÞ

2
þ o2ððgþ dÞ

2
þ glÞ þ oðglðgþ 2dÞ þ 2dðgþ dÞ

2
Þ

dðgþ dÞðdþ oÞðgðdþ lþ oÞ þ ðdþ lÞðdþ oÞÞ
ð7Þ
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Numerical exploration of expression (7) reveals two important results (Fig 1). First, as the

force of spillover falls, the average age at infection rises. Second, the relationship between the

force of spillover and average age at infection is weakened by waning immunity (ω). We will

see in the next sections that these simple results—when combined with an increased likelihood

of progressing to clinical disease with advancing age at infection—help define conditions

where reducing the force of spillover can increase the overall public health burden of zoonotic

disease.

Age-specific disease severity can undermine public health benefits of

spillover reduction programs

For many infectious diseases, clinical severity increases with age at infection. This has been

demonstrated for Lassa virus [35, 37], SARS-CoV-2 [38], and a wide range of other bacterial

and viral pathogens [18]. Although the specific functional form of this increase varies with dis-

ease, we can model the basic phenomenon by assuming that the rate at which infected individ-

uals become clinically diseased, μ, increases linearly with advancing age such that:

m ¼ m0 þ aa ð8Þ

where α quantifies how rapidly the rate of transition to clinical disease increases with advanc-

ing age.

Eq (8) can be combined with steady-state solutions for the age distribution of infected indi-

viduals to approximate the burden of infectious disease, B, as long as transitions to clinical

Fig 1. The relationship between the force of spillover (λ) and the average age at infection �A. The blue line shows the case

of permanent immunity, the read line immunity that lasts, on average, for the expected lifespan of the human population, and

the green line immunity that lasts for, on average, only 1/4 of the expected human lifespan. The remaining parameters were: μ
= 2.89, δ = 1/60, v = 0, γ = 365/14.

https://doi.org/10.1371/journal.pcbi.1012358.g001
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disease are rare (S1 Text). Analyzing the relationship between burden and the force of spillover

reveals that, in some cases, burden may peak for intermediate values of spillover, creating the

potential for spillover reduction to actually increase the health burden of zoonotic disease (Fig

2). If immunity is lifelong (ω = 0), this possibility arises anytime:

a∗ >
m0dðgþ dÞ

g
ð9Þ

Specifically, if condition (9) holds, the health burden of spillover is maximized at intermediate

values of the force of spillover (Fig 2, solid lines). This condition is most likely to be satisfied

when the rate of transition to clinical disease increases rapidly with age. Numerical solutions

of the exact model verify the accuracy of the analytical approximation (Fig 2, dots). Results

derived in the S1 Text show that this condition also holds if expected human lifespan is used as

the relevant public health metric. Specifically, if condition (9) holds, expected human lifespan

is minimized for intermediate values of the force of spillover.

If immunity wanes over time, spillover reduction is much less likely to negatively impact

human health (Fig 3). Specifically, if immunity wanes over time (ω> 0), the health burden of

zoonotic spillover is maximized for intermediate values of the force of spillover only when a

Fig 2. The health burden of zoonotic disease, B, as a function of the force of spillover (λ) for disease severity that

increases at different rates with advancing age. As the severity of disease increases more rapidly with advancing age, the

scope for spillover reduction to negatively impact human health grows. In this example, the rate at which infected individuals

become diseased increases following Eq (8) with the intercept set to μ0 = 1.0 and the slope set such that the rate of transition to

disease is independent of age (blue line; α = 0), increases 5-fold (red line; α = 1/15), or increases 10-fold (yellow line; α = 3/20)

from the time of birth to age at which an individual reaches their expected natural lifespan (1/δ). The dotted lines are

numerical solutions to the exact model that do not assume the rate of transition to clinical disease is rare. The analytical

approximations slightly overestimate the clinical burden because individuals leaving the I class as they become diseased are

ignored. This gap between approximation and exact solution grows as the rate of progression to clinical disease (μ) increases,

although the general shape of the curves remains consistent. The remaining parameters were: b = 100, δ = 1/60, v = 1, γ = 365/

14.

https://doi.org/10.1371/journal.pcbi.1012358.g002
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set of restrictive conditions hold:

a >
dm0ðgþ dÞðdþ oÞðgþ dþ oÞ

gð� oðgþ 2dÞ þ dðgþ dÞ � o2Þ
ð10Þ

and either inequality (11) or inequalities (12) are satisfied:

d � oð1þ
ffiffiffi
2
p
Þ ð11Þ

o < d < oð1þ
ffiffiffi
2
p
Þ ð12aÞ

d > oþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 8o2
p

� g

2
ð12bÞ

The first condition (10) requires that the rate of transition to clinical disease increases rapidly

with age and is generally more restrictive than the parallel condition with lifelong immunity

Fig 3. The health burden of zoonotic disease, B, as a function of the force of spillover (λ) for immunity that wanes at

three different rates. As immunity becomes more transient, the scope for spillover reduction to negatively impact human

health shrinks. The blue line is a point of reference and shows the case where immunity is lifelong and spillover reduction can

negatively impact human health. The red line shows a case where immunity wanes extremely slowly, lasting on average, three

times the expected human lifespan. In this case, negative impacts can still occur, but they are extremely weak. Finally, the

green line shows a case where immunity wanes sufficiently rapidly for negative impacts on human health to no longer be

possible. Remarkably, this occurs even though this green line illustrates a scenario where immunity still lasts, on average, for

the average lifespan of the human population. The dotted lines are numerical solutions to the exact model that do not assume

the rate of transition to clinical disease is rare, but instead explicitly track the movement of individuals from the I class into the

M class. The analytical approximation overestimates the clinical burden as in Fig 2, but here the discrepancy between the

analytical prediction and the numerical solution to the exact model becomes more appreciable as immunity wanes more

rapidly. This occurs because waning immunity increases the proportion of the population in the diseased state, and this state is

ignored by our analytical approximation. In this example, the rate at which infected individuals become diseased increases

following Eq (8) with the intercept set to μ0 = 1.0 and the slope set to α = 3/20 such that the rate of transition to disease

increases 10-fold from the time of birth to the age at which an individual reaches their expected natural lifespan (1/δ). The

remaining parameters were: b = 100, δ = 1/60, v = 1, γ = 365/14.

https://doi.org/10.1371/journal.pcbi.1012358.g003
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(9). The additional conditions (11 and 12) require that immunity wanes slowly relative to life-

span. The reason waning immunity has such a significant impact, of course, is that it prevents

immunity from becoming permanently established at a young age when the health conse-

quences of infection are mild. Thus, even individuals infected early in life can be infected again

later in life when the likelihood of clinical disease is increased. As a consequence, reducing the

force of spillover generally reduces the public health burden of zoonotic disease in an intuitive

way when immunity wanes over time.

The ultimate consequences of spillover reduction take years to materialize

Up until this point, our results have focused on steady-state solutions and ignored the tempo-

ral dynamics of a transition from a state where the force of spillover is high to one where the

force of spillover has been reduced, but not entirely eliminated. To better understand the con-

sequences of partial spillover reduction for human health during the period of transition, we

used stochastic simulations. Simulations were established with a burn-in period of 200 years

during which the population was exposed to a relatively high force of spillover. After this initial

burn-in period, the population was tracked for an additional 200 years during which the force

of spillover remained high before reducing the force of spillover in year 200 and then tracking

the population for another two hundred years under the reduced force of spillover regime.

Simulations were performed over a broad range of parameter combinations and the resulting

temporal patterns of infection and health burden were observed.

Stochastic simulations supported our steady-state solutions and analytical approximations,

but also identified important transient features. For instance, Fig 4 shows a case where the ana-

lytical condition (9) is satisfied. As expected, the health burden of spillover ultimately increases

in response to the reduction in the force of spillover, and the average lifespan decreases. In

contrast, Fig 5 shows a case where the analytical condition (9) is not satisfied and the health

burden of spillover fails to increase in response to the reduction in the force of spillover as

expected from our analytical prediction. These figures also demonstrate two additional results

that proved to be quite general in our simulation analyses. First, when negative health impacts

do occur, they take years to materialize, generally on the order of the average human lifespan.

In the years following an abrupt reduction in the force of spillover, the population may enjoy a

deceptive reprieve before the health burden of spillover increases to levels exceeding historical

precedent. Second, even when negative health impacts do not occur (e.g., Fig 5), the benefits of

spillover reduction may be transient. For instance, even though spillover reduction has positive

health impacts in Fig 5, as predicted, the public health benefits enjoyed by the population

immediately following spillover reduction erode significantly over time. This erosion occurs

through the same basic mechanism that enables negative impacts: as the force of spillover falls,

the age at infection rises, and more individuals are infected later in life when severe disease is

more likely to occur.

To evaluate the generality of our results, we explored additional simulations that relaxed

the assumption of lifelong immunity. These simulations support our analytical predictions

that negative consequences of spillover reduction become less likely if immunity wanes (Fig 6).

In addition, these simulations demonstrate that waning immunity stabilizes the health benefits

gained through partial spillover reduction (Fig 6). For instance, when immunity lasts, on aver-

age, for only 1/4 the expected human lifespan, our simulations show that the initial public

health benefits of partially reducing spillover are more stable and only mildly eroded over time

(Fig 6). Here too, the importance of waning immunity stems from its role in decoupling the

force of spillover from the average age of infection. This occurs because waning immunity

allows individuals that were previously infected earlier in life to be reinfected later in life,
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weakening the relationship between the force of spillover and average age of infection.

Although waning immunity makes negative consequences of spillover reduction less likely, the

burden of spillover is actually greater with waning immunity due to the additional disease bur-

den imposed by reinfection.

Application: Lassa virus in West Africa

Using parameter values estimated for Lassa virus allows us to evaluate if spillover reduction

could potentially cause a counterintuitive and harmful increase in the health burden of this

zoonotic disease. Specifically, if we assume that immunity is lifelong, the critical condition (9)

evaluated for parameter values estimated for Lassa virus demonstrates that spillover reduction

could conceivably increase the health burden of this disease. In contrast, if we assume immu-

nity wanes at the rate estimated by [34], the critical conditions (10, 11, and 12) predict only

positive health impacts of spillover reduction.

To better understand the likely consequences of spillover reduction at the more granular

scale of individual populations, we calculated the force of spillover for 94 different human pop-

ulations for which systematic serosurveys were conducted and compiled by [39]. Specifically,

Fig 4. The temporal dynamics of infection before (years 200–400) and after (years 401–600) an 87.5% drop in the force

of spillover for a case with lifelong immunity and where negative impacts of spillover reduction are predicted to occur.

Each panel shows the output from ten replicate simulation runs, with each line showing a ten year rolling average of the

value for each individual simulation run. Panel A shows the percentage of the human population with active infection,

Panel B depicts the average age at which individuals are infected, Panel C reports the burden of disease, B, and Panel D

shows the average human lifespan. Parameters were: α = 0.15, μ0 = 1.0, b = 500, δ = 1/60, v = 365/7, γ = 365/14.

https://doi.org/10.1371/journal.pcbi.1012358.g004
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we used Eq (5) to predict the force of spillover for each site where seroprevalence of Lassa virus

antibodies had been systematically evaluated (S1 Text). We also predicted the force of spillover

for three additional hypothetical sites with levels of Lassa virus seroprevalence greater than any

populations in our data set and equal to 0.65, 0.75, and 0.85. Next, we predicted the equilib-

rium health burden as a function of the force of spillover using numerical solutions of the ordi-

nary differential equations (S1 Text equations S1) and numerical integration of Eq (3). Finally,

we placed each site on this curve at the position corresponding to its estimated force of spill-

over. This analysis demonstrates that even when immunity is lifelong, the force of spillover

estimated for the sites in our study places them to the left of the peak health burden (Fig 7; red

dots). As a consequence, reducing the force of spillover within these sites would have positive

impacts on human health. Only the hypothetical site with Lassa virus seroprevalence equal to

0.85 could experience a negative health impact of spillover reduction (Fig 7; blue dots). We

evaluated the sensitivity of these results by studying additional scenarios where the rate of tran-

sition to severe disease increased more rapidly than we estimate. Specifically, we studied cases

where the slope of the relationship was 1.5 and 2.0 times the value we estimated using the data

from [35]. The results of these additional analyses demonstrate that our general conclusion

remains robust—even when the rate of transition to clinical disease is twice as sensitive to

Fig 5. The temporal dynamics of infection before (years 200–400) and after (years 401–600) an 87.5% drop in the force

of spillover for a case with lifelong immunity and where negative impacts of spillover reduction are not predicted to

occur. Each panel shows the output from ten replicate simulation runs, with each line showing a ten year rolling average of

the value for each individual simulation run. Panel A shows the percentage of the human population with active infection,

Panel B depicts the average age at which individuals are infected, Panel C reports the burden of disease, B, and Panel D

shows the average human lifespan. Parameters were: α = 0.0167, μ0 = 1.0, b = 500, δ = 1/60, v = 365/7, γ = 365/14.

https://doi.org/10.1371/journal.pcbi.1012358.g005
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advancing age as our estimate, no populations in our dataset are predicted to experience nega-

tive consequences of spillover reduction (S1 Text).

Discussion

We have developed and analyzed mathematical and computational models to identify condi-

tions where reducing the spillover of zoonotic pathogens can have unanticipated, negative

impacts on human health. Our models focus on zoonotic pathogens that infect humans pri-

marily through direct spillover with little or no subsequent human-to-human transmission.

We use these models to clarify when increases in the average age at infection caused by a

reduction in the force of spillover can increase overall levels of disease within the human popu-

lation. Model analyses demonstrate that negative public health impacts of spillover reduction

are generally unlikely and that two restrictive conditions must be met for negative conse-

quences to arise. First, disease severity must increase sufficiently rapidly with advancing age.

Second, pathogen immunity must be durable and wane only very slowly over time. Although

our results suggest that negative impacts of spillover reduction are likely to be rare, they also

demonstrate that the benefits of spillover reduction may dissipate over time as the system

Fig 6. The temporal dynamics of infection before (years 200–400) and after (years 401–600) an 87.5% drop in the force

of spillover for a case with slowly waning immunity. Parameters were identical to those used in Fig 4 except that

immunity lasts, on average, only as long as the expected human lifespan (ω = 1/60). As in Fig 4, each panel shows the output

from ten replicate simulation runs, with each line showing a ten year rolling average of the value for each individual

simulation run. Panel A shows the percentage of the human population with active infection, Panel B depicts the average

age at which individuals are infected, Panel C reports the burden of disease, B, and Panel D shows the average human

lifespan. Parameters were: α = 0.0167, μ0 = 1.0, b = 500, δ = 1/60, v = 365/7, γ = 365/14.

https://doi.org/10.1371/journal.pcbi.1012358.g006
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settles into a new equilibrium state. These results suggest that the beneficial public health

effects of spillover reduction will be greatest and last the longest when a near-complete elimi-

nation of spillover risk can be achieved or when immunity to a pathogen is transient and rein-

fection common.

While spillover reduction is unlikely to negatively impact human health, negative impacts

are possible if disease severity increases sufficiently rapidly with age. Accumulating studies of

the relationship between these quantities suggest that significant increases in disease severity

with advancing age are common [18], but how often disease severity increases sufficiently rap-

idly for negative consequences to be widespread remains unclear. Additional uncertainty arises

because of sensitivity to the dynamics of waning immunity and reinfection. Specifically, in our

model, immunity to the pathogen must be very durable and reinfection unlikely for negative

consequences to be possible. The importance of durable immunity in our model stems from

the role reinfection plays in breaking associations between spillover pressure and the average

age at infection. Specifically, because waning immunity returns previously infected individuals

to the susceptible class, it weakens the association between infection and age. Thus, in cases

where immunity wanes rapidly, reducing spillover decreases the force of infection but has little

impact on the average age of infection, undermining the mechanism through which counter-

intuitive increases in disease burden arise. An important caveat to this result is that we assume

secondary infections (i.e., those acquired by previously infected individuals who have recov-

ered and subsequently lost immunity) are associated with the same risk of developing severe

disease as are primary infections. If, instead, secondary infections are less likely to develop

severe disease (e.g., because of a long-lasting T-cell response), waning immunity will do less to

guard against the possibility that spillover reduction increases disease burden than our results

suggest. Because the relationship between reinfection and disease severity is poorly understood

[40], a conservative approach to assessing risk is to assume lifelong immunity.

When our model is parameterized for Lassa virus, our results suggest negative conse-

quences of spillover reduction efforts should be possible only in populations where the current

force of spillover is extremely high. Specifically, none of the populations for which we could

find seroprevalence estimates are predicted to experience a force of spillover sufficient for

Fig 7. The predicted disease burden of Lassa virus infection for the case of lifelong immunity (left panel) and waning immunity (right panel). The

black line is the theoretical prediction for each case as a function of the force of spillover. The red dots show the force of spillover estimated for actual

sites in West Africa where systematic serosurveys have been conducted. The blue dots show hypothetical populations with a force of spillover estimated

for seroprevalences of R ¼ 0:65, R ¼ 0:75, and R ¼ 0:85. For the case of waning immunity, the expected duration of immunity is set to 15.63 years (ω
= 0.064) as estimated by [34]. Note that the burden of zoonotic disease is significantly greater with waning immunity because reinfection is possible.

Parameter values were as described in the S1 Text. Birth rate of the human population was set to b = 24.75 which yields a local population size of 1500.

https://doi.org/10.1371/journal.pcbi.1012358.g007
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spillover reductions to lead to negative health consequences (Fig 7). This result holds even if

the rate at which disease severity increases with advancing age is twice the value we estimate

using data from [35]. Although these results are encouraging, populations may well exist

where the contemporary force of Lassa virus spillover exceeds the threshold value required for

negative consequences. This leads to the disconcerting possibility that the populations most

likely to be targeted for spillover reduction efforts because of high seroprevalence and infection

rates may also be those most likely to experience negative impacts of partial spillover reduc-

tion. An additional complication in the Lassa virus system is that the force of spillover may be

decreasing naturally as an invasion by the black rat, Rattus rattus, displaces the primary rodent

reservoir of Lassa virus, Mastomys natalensis [28–31]. Our results show that this reduction in

spillover could, in principle, change the dynamic of human infection from one defined by fre-

quent mild childhood infections to one defined by infrequent but severe infections in older

individuals.

Although our model is quite general, it makes a range of assumptions that could influence

the likelihood that spillover reduction causes negative public health impacts. For instance, our

results are predicated upon an absence of human-to-human infection and thus are directly

applicable to only a subset of zoonotic pathogens. It seems likely, however, that our results

would continue to apply in cases where human-to-human transmission following initial spill-

over is weak and not self-sustaining (R0 < 1). In such cases, human-to-human transmission

would simply result in modest increases in the force of infection which should have little

impact on our overall results. Another important assumption of our model is that the force of

spillover is equal across human age classes. This assumption was made for simplicity and is

likely to be violated when exposure to wild animals carrying zoonotic pathogens varies signifi-

cantly with age. For instance, recent work suggests that exposure risk to Lassa virus may be

concentrated in young children as a consequence of hunting wild rodents [41]. Because age-

specific patterns of exposure are likely to be idiosyncratic and system specific, however, it is

not clear what consequence they will have for the outcome of spillover reduction programs.

Finally, our applied results on Lassa virus assume human populations have reached a steady-

state where the force of spillover has been constant for long enough that the age structure of

immunity has stabilized. Although this assumption is convenient and difficult to relax given

the limited data at our disposal, it is unlikely to hold because of extensive recent human migra-

tion within West Africa [42] and because of changes in the distribution and abundance of the

rodent reservoir caused by an ongoing biological invasion [31].

Reducing the spillover of zoonotic pathogens holds incredible promise for improving

human health [14–17]. Our results demonstrate, however, that this approach is not entirely

without risk in systems where the severity of infection increases with age. Developing a better

understanding of the relationship between disease severity and age at infection and the extent

to which this relationship holds for reinfection, will help clarify if the risks are minimal, as our

results suggest for Lassa virus, or can become appreciable in some systems. From a practical

perspective, our results suggest two guidelines for disease mitigation that minimize the risk of

adverse consequences and provide projections of public health gains. First, before implement-

ing interventions that reduce spillover, system-specific models parameterized with the best

available data should be used to quantify benefits and risks over various time horizons and

implementation strategies. These models can be used to set realistic expectations for possible

outcomes and allow affected communities to make informed decisions about the merits of

proposed spillover control programs. Second, interventions should be selected that have a high

probability of eliminating most spillover risk. Interventions that partially reduce spillover but

allow it to remain appreciable create the greatest scope for adverse public health outcomes and

increase the likelihood that public health gains will be short-lived. Pursuing well-planned
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spillover reduction programs that follow these guidelines remains one of the most promising

methods available for dealing with the long-standing challenge of managing zoonotic disease.
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